MAXIMAL INTERSECTING FAMILIES OF FINITE SETS
AND \(n\)-UNIFORM HJELMSLEV PLANES

DAVID A. DRAKE\(^1\) AND SHARAD S. SANE

Abstract. The following theorem is proved. The collection of lines of an \(n\)-uniform projective Hjelmslev plane is maximal when considered as a collection of mutually intersecting sets of equal cardinality.

1. Introduction. A clique of \(k\)-sets is a collection of mutually intersecting sets of size \(k\). We write \(N(k)\) to denote the minimum cardinality of a maximal clique of \(k\)-sets. Apparently the exact value of \(N(k)\) is known only for very small values of \(k\). However, Erdős and Lovász [7] have obtained the asymptotic lower bound \(N(k) \geq \frac{8k}{3} - 3\); and Füredi [8, p. 283] writes that he can prove \(N(k) < k^{f(k)}\) where \(f(k) = ck^{7/12}\).

For particular values of \(k\), the preceding upper bound can be greatly sharpened. It is easily proved, for example, that

(1.1) a projective plane of order \(r\) is a maximal clique. Consequently

(1.2) \(N(r + 1) \leq r^2 + r + 1\) whenever \(r\) is the order of a projective plane.

In addition Füredi has proved the following two theorems (Proposition 1 and Theorem 1 in [8]). (Füredi informs us that (1.3) is joint work with L. Babai.)

(1.3) \(N(r^2 + r) \leq r^4 + r^3 + r^2\) whenever \(r\) is the order of a projective plane.

(1.4) \(N(2r) \leq 3r^2\) whenever \(r\) is the order of a projective plane.

In this paper we obtain the following common generalization of (1.2) and (1.3).

Theorem 1.1. If \(r\) is the order of a finite projective plane, then \(N(r^n + r^{n-1}) \leq r^{2n} + r^{2n-1} + r^{2n-2}\) for every positive integer \(n\).

Füredi proves (1.3) by constructing a 2-uniform projective Hjelmslev plane over an arbitrary finite projective plane and then observing that such Hjelmslev planes are maximal cliques. Henceforth we write PH-plane for projective Hjelmslev plane. The more difficult of the two steps in the Füredi program is the PH-plane construction, a construction which has been discovered independently by Füredi [8] and Craig [3] (see also Lüneburg [13]). Since the class of 1-uniform PH-planes is by definition just the class of finite projective planes, conclusions (1.2) and (1.3) both follow by observing that the line set of every \(n\)-uniform PH-plane with \(n = 1\) or \(2\) is a maximal clique. Similarly we shall obtain Theorem 1.1 as a corollary to the following result.
Theorem 1.2. The line set of every (finite) n-uniform projective Hjelmslev plane is a maximal clique.

The contribution of this paper is to prove Theorem 1.2. The other step, that of establishing the existence of n-uniform PH-planes over arbitrary projective planes, has already been completed: first by Artmann [1] and later by Drake [6] who used a different construction.

If k can be represented both as $r^m + r^{m-1}$ and as $s^p + s^{p-1}$ with $m < p$, one should apply Theorem 1.1 with $n = p$ to obtain the sharper bound. Unfortunately such double representations occur for prime powers r and s only when $m = 1$ and in the case $2^3 + 2^2 = 3^2 + 3 = 11 + 1$. In the latter case one obtains $N(12) \leq 133$ by using (1.2), $N(12) \leq 117$ by using the Füredi result (1.3), and $N(12) \leq 112$ by using Theorem 1.1 with $n = 3$. The real value of Theorem 1.1, of course, is that variation in n allows one to obtain a bound for $N(k)$ for new values of k.

2. Prerequisites. We refer the reader to [5, pp. 192–197] for background material that includes the definitions of PH-planes and NAH-planes (near affine Hjelmslev planes). We repeat here some of the material from the cited pages, however, because the conclusions of this paper will interest a number of mathematicians without previous knowledge of Hjelmslev planes. We use the designation H-planes to refer collectively to NAH- and PH-planes.

To every H-plane E is associated a canonical (incidence-structure) epimorphism $\phi: E \to E'$ where E' is a projective plane if E is a PH-plane and an affine plane if E is an NAH-plane. Points P and Q (lines g and h) are called neighbors, and one writes $P \sim Q$ ($g \sim h$), if and only if $P^\phi = Q^\phi$ ($g^\phi = h^\phi$). One writes \sim for the negation of \sim. Intersecting lines g and h satisfy $g \sim h$ if and only if $|g \cap h| > 1$. We write (P) to denote the set $\{Q: Q \sim P\}$ and (g) to denote the set $\{h: h \sim g\}$. The following result was proved by Klingenberg [10, Satz 3.6]. (See also the remarks on page 260 of [12].)

Proposition 2.1. Let the incidence structure $A = A(H, h)$ be obtained from a PH-plane H by removing a neighbor class (h) of lines as well as all points of H which are incident with lines of (h). Then A is an NAH-plane.

To each finite H-plane E are associated three integers denoted by r, s and t. For any flag (P, g) the integer t is the number of lines h through P which satisfy $h \sim g$ (as well as the number of points Q on g that satisfy $Q \sim P$); $|(P)| = |(g)| = t^2$; $s + t$ is the number of lines incident with P; and r is the order of E'. Every line contains $s + t$ points if E is a PH-plane, s points if E is an NAH-plane. The equality $s = rt$ holds for all H-planes. The preceding properties of r, s and t were first noted (for PH-planes only) by Kleinfeld [9]. Accordingly we shall designate this collection of properties the Kleinfeld Counting Lemma.

A nearly 1-uniform PH-plane (NAH-plane) is a finite projective plane (finite affine plane). For $n > 1$ a finite H-plane E (of either type) is called nearly n-uniform if, for every point P, (1) E induces an incidence structure $A(P)$ on (P) which is a nearly $(n - 1)$-uniform NAH-plane, (2) every line of $A(P)$ is induced by d lines of E for
some fixed integer \(d \). Proposition 1.10(11) of [5] asserts that \(d = r \). A nearly \(n \)-uniform H-plane is said to be \(n \)-uniform if every \(A(P) \) is an \((n - 1)\)-uniform NAH-plane with a "parallelism," but the reader will not need to understand this notion.

We now establish some conventions. All H-planes in this paper are assumed to be nearly \(n \)-uniform for some \(n \). The symbols \(E_n, H_n \) and \(A_n \) denote a nearly \(n \)-uniform H-, PH- and NAH-plane, respectively, with \(E', H' \) and \(A' \) as the respective underlying planes. In all cases the order of the underlying plane is assumed to be \(r \).

One writes \(P(\sim \ i)Q \) to mean that \(P \) and \(Q \) are joined by precisely \(r^i \) lines for \(0 \leq i < n \) and \(P(\sim n)Q \) to mean that \(P = Q \). One writes \(P(\sim i)Q \) if \(P(\sim j)Q \) for some \(j \geq i \). The negation of \(P(\sim i)Q \) is denoted by \(P(\sim i)Q \). The following result is part of Proposition 1.10 of [5]; most of the proof, however, is given in the proof of Proposition 2.2 in [4] rather than in [5].

Proposition 2.2. Every nearly \(n \)-uniform H-plane \(E_n \) has the following properties.

1. \(s = r^n, t = r^{n-1} \).

2. If \(P \) and \(Q \) are distinct points of \(E_n \), then \(P(\sim i)Q \) for some nonnegative integer \(i < n \).

3. The dual of (2) holds for intersecting lines.

4. If \(P \) is in \(g \) and \(i \geq 1 \), then \(|\{Q \in g: Q(\sim i)P\}| = r^{n-i} \).

5. The dual of (4) holds.

One of the principal results of [4] (Proposition 4.6) asserts that the dual of a "strongly" \(n \)-uniform PH-plane is a strongly \(n \)-uniform PH-plane. In [14, Satz 1] Törner proves that every nearly \(n \)-uniform PH-plane is a strongly \(n \)-uniform PH-plane; Theorem 2.3 below is an immediate consequence. (An alternative proof is given in [11].)

Theorem 2.3. Every nearly \(n \)-uniform PH-plane is \(n \)-uniform, and the dual of an \(n \)-uniform PH-plane is an \(n \)-uniform PH-plane.

Two lines \(g \) and \(h \) of \(A_n \) are said to be quasiparallel (and one writes \(g \parallel h \)) if \(g^* \parallel h^* \) in \(A' \). Then \(| \) is an equivalence relation which partitions the lines of \(A_n \) into \(r + 1 \) quasiparallel classes; each such class is the disjoint union of \(r \) neighbor classes of lines, hence consists of \(rt^2 \) lines. As observed in [5, p. 202], the condition \(g \parallel h \) holds if and only if \(| g \cap h | \neq 1 \). This characterization of the quasiparallel relation makes it easy to prove the following lemma.

Lemma 2.4. Let \(g, h \) and \(P \) be lines and point of \(E_n \) such that \(g^* = g \cap (P) \) and \(h^* = h \cap (P) \) are not empty. Then \(g \sim h \) if and only if \(g^* \parallel h^* \) in \(A(P) \).

3. Preliminary results.

Proposition 3.1. Let \(\Lambda \) be a quasiparallel class of \(A_n \), \(S \subset \Lambda \), \(|S| < s = r^n \). Then there is a set \(C \) of points of \(A_n \) which has the following properties: (1) \(|C| = S \); (2) each pair of points of \(C \) is joined by a line of \(\Lambda \); (3) no point of \(C \) lies on any line of \(S \).
PROOF. For $n = 1$, Λ is a parallel class, and C may be taken to be the set of points of any line in $\Lambda \setminus S$. Assume $n > 1$, and let $\Lambda_1, \Lambda_2, \ldots, \Lambda_r$ be the r line neighborhoods contained in Λ. If S_j denotes $S \cap \Lambda_j$ for each j, then $|S_j| < s/r = t$ for some i. We intend to obtain C from the set of points that are incident with lines of Λ_i. Let h be a line in Λ_i; P_1, P_2, \ldots, P_r be r mutually nonneighbor points on h. For arbitrary fixed j, let $\Lambda^* = \{g': g' = g \cap (P_j) \text{ for some } g \in \Lambda_j\}$, $S^* = \{g': g' = g \cap (P_j) \text{ for some } g \in S_j\}$. By Lemma 2.4, Λ^* is a quasiparallel class of lines in the nearly $(n-1)$-uniform NAH-plane $A(P_j)$; and S' is a subset of fewer than $t = r^{n-1}$ lines of Λ'. By the induction assumption there is a set $C_j \subset (P_j)$ such that (1) $|C_j| = r^{n-1}$; (2) each pair of points of C_j is joined by a line of Λ'; (3) no point of C_j lies on any line of S. We take C to be the union of the C_j.

PROPOSITION 3.2. Let g be any line of H_n, $N \subset (g)$, $|N| < t$. Then there is a set D of points of H_n with the properties: (1) $|D| = s + t$; (2) each pair of points of D is joined by a line of (g); (3) no point of D lies on any line of N.

PROOF. Let P_0, P_1, \ldots, P_r be $r + 1$ mutually nonneighbor points on g. For fixed $j > 0$, apply Lemma 2.4 to see that the lines of N induce a subset N' of a quasiparallel class of lines in $A(P_j)$. Applying Proposition 3.1 (with $n - 1$ instead of n), we obtain a set D_j of points of (P_j) such that (1) $|D_j| = t$; (2) each pair of points of D_j is joined by a line of (g); (3) no point of D_j lies on any line N. We now take D to be the union of the D_j.

PROPOSITION 3.3. Let S be a set of at most $s + t$ mutually intersecting lines of A_n whose union contains every point of A_n. Then all lines of S pass through a common point.

PROOF. The assertion is easily verified for $n = 1$, so assume $n > 1$. Let g_1', g_2', \ldots, g_d' be the distinct images in A' of the lines of S. Since the g_i' intersect in A', $d < r + 1$. Then the g_i' pass through a common point P', and hence the lines of S all contain points from a common neighborhood (P). The number of points of A, not in (P), is $t^2(r^2 - 1) = s^2 - t^2$, and each line of S contains $s - t$ points outside (P). Then every point outside (P) must lie on a single line of S, so every pair of lines of S must intersect in (P). Let g be any line of S. Applying Proposition 2.2(5) with $i = n - 1$, one sees that there are $r - 1$ other lines h which satisfy $h \cap (P) = g \cap (P)$. Take Q to be any point of $h \setminus (P)$, and let k be a line of S which contains Q. Then k and g intersect in $g \cap (P) = h \cap (P)$. Then $k \cap h$ contains nonneighbor points, so $h = k$ is in S. It follows that the set $S^* = \{g \cap (P): g \in S\}$ has cardinality at most $(s + t)/r = r^{n-1} + r^{n-2}$. Applying the induction assumption to $A(P)$, we see that all lines of S^* (and therefore all lines of S) meet in a common point.

4. Proofs of the main results. Thanks to Theorem 2.3, it is immaterial whether we prove Theorem 1.2 or its dual. Then let S be a set of $s + t$ or fewer lines of H_n whose union contains every point of H_n. To complete the proof of Theorem 1.2 it suffices to prove the existence of a point P which lies on all lines of S. We intend to apply Proposition 3.3. To do so, we must remove a neighbor class (h) of lines from H_n to
obtain a nearly n-uniform NAH-plane A_n (see Proposition 2.1). This must be done so that the intersections of lines of S lie in A_n.

For any g in S let N denote $S \cap (g)$. Assume $|N|<t$, and apply Proposition 3.2 to obtain a set D of $s + t$ points. Conditions (2) and (3) of Proposition 3.2 guarantee that the points of D lie on at least $s + t$ lines of $S \backslash (g)$. Since g is in S, we have produced the contradiction $|S|>s + t$. Then $|S \cap (g)|$ must be at least t for every g in S, so S contains lines from at most $(s + t)/t = r + 1$ distinct line neighborhoods of H_n. Consider the image S^* of S in H', and apply the dual of (1.1): one sees that S^* is the set of all $r + 1$ lines incident with some point Q' of H'. Then S contains exactly $t(r + 1) = s + t$ lines. Let Q be a point of H_n with $Q^* = Q'$. The number of flags (R, g) with g in S and $R \sim Q$ is $(s + t)s = t^2(r^2 + r)$; i.e., is just the number of points R of H_n with $R \sim Q$. Then every point $R \sim Q$ lies on a unique line of S, so all intersections of pairs of lines of S lie in (Q). Let h be any line having an empty intersection with (Q). Applying Proposition 3.3 to $A_n = A(H_n, h)$ completes the proof of Theorem 1.2.

To prove Theorem 1.1, let r be the order of a projective plane, n be a positive integer. Then there exists an n-uniform PH-plane H_n whose associated plane H' is of order r: this assertion is Corollary 8 of [6]; it is also the main theorem of [1] if one uses the Bacon result [2] that finite PH-planes of level n are n-uniform. Now Theorem 1.1 follows from Theorem 1.2 in view of Proposition 2.2(1) and the Kleinfeld Counting Lemma.

ACKNOWLEDGMENT. During the writing of this paper, the second author held a visiting position in the Department of Mathematics at the University of Florida.

REFERENCES