Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Order ideals of minimal generators


Authors: E. Graham Evans and Phillip Griffith
Journal: Proc. Amer. Math. Soc. 86 (1982), 375-378
MSC: Primary 13C05
DOI: https://doi.org/10.1090/S0002-9939-1982-0671197-2
MathSciNet review: 671197
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ R$ be a local noetherian domain with algebraically closed residue field and let $ M$ be a finitely generated module of rank $ r$ which is not free. Then there is some minimal generator $ x$ of $ M$ such that the ideal of images of $ x$ under maps of $ M$ to $ R$ has height at most $ r$.


References [Enhancements On Off] (What's this?)

  • [1] W. Bruns, "Jede" endliche freie Auflösung ist freie Auflösung eines von drei Elementen erzeugten Ideals, J. Algebra 39 (1976), 429-439. MR 0399074 (53:2925)
  • [2] -, The Eisenbud-Evans generalized principal ideal Theorem and determinantal ideals, Proc. Amer. Math. Soc. 83 (1981), 19-24. MR 619972 (82k:13010)
  • [3] W. Bruns, E. G. Evans and P. Griffith, Syzygies, ideals of height two, and vector bundles, J. Algebra 67 (1980), 143-162. MR 595025 (82e:13009)
  • [4] D. Eisenbud and E. G. Evans, A generalized principal ideal theorem, Nagoya Math. J. 62 (1976), 41-53. MR 0409440 (53:13195)
  • [5] E. G. Evans and P. Griffith, The syzygy problem, Ann. of Math. 114 (1981), 323-333. MR 632842 (83i:13006)
  • [6] T. Gulliksen, Tout ideal premier d'un anneau noethérien est associé à une ideal engendré par trois éléments, C. R. Acad. Sci. Paris Sér. A 271 (1970), 1207-1208. MR 0271085 (42:5968)
  • [7] G. Horrocks and D. Mumford, A rank 2 bundle on $ {{\mathbf{P}}^4}$ with 15,000 symmetries, Topology 12 (1973), 63-81. MR 0382279 (52:3164)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13C05

Retrieve articles in all journals with MSC: 13C05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1982-0671197-2
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society