DIEUDONNÉ-SCHWARTZ THEOREM ON BOUNDED SETS IN INDUCTIVE LIMITS. II

J. KUCERA AND C. BOSCH

Abstract. The Dieudonné-Schwartz Theorem [1, Chapter 2, §12] has been stated for strict inductive limits. In [3] it has been extended to inductive limits. Here the result of [3] is generalized. Also, the case when each set bounded in \(\text{ind lim } E_n \) is contained, but not necessarily bounded, in some \(E_n \) is considered.

Let \(E_1 \subset E_2 \subset \cdots \) be a sequence of locally convex spaces and \(E = \text{ind lim } E_n \) their inductive limit (with respect to the identity maps \(\text{id}: E_n \to E_{n+1} \)). The Dieudonné-Schwartz theorem states that a set \(B \subset E \) is bounded if and only if it is contained and bounded in some \(E_n \), provided that

(H-1) each \(E_n \) is closed in \(E_{n+1} \), and

(H-2) the topology of each \(E_n \) equals the topology induced in \(E_n \) by \(E_{n+1} \). It is convenient to introduce some further hypotheses:

(H-3) each \(E_n \) is closed in \(E \),

(H-4) each convex and closed set in \(E_n \) is closed in \(E_{n+1} \),

(H-7) for any \(n \in \mathbb{N} \) there is \(p \in \mathbb{N} \) such that \(\overline{E_n} \subset E_{n+p} \), where \(\overline{E_n} \) is the closure of \(E_n \) in \(E \),

(H-8) for any closed hyperplane \(F \) in \(E_n \), \((E_n \setminus F) \cap \overline{E_{n+1}} = \emptyset \),

(DS) each set \(B \) bounded in \(E \) is contained in some \(E_n \), and

(DST) each set \(B \) bounded in \(E \) is contained and bounded in some \(E_n \).

The following implications: H-1 & 2 \(\Rightarrow \) H-3, H-3 \(\Rightarrow \) DS, H-4 \(\Rightarrow \) DST, and H-4 \(\Rightarrow \) H-3, are known, see [1, Chapter 2, §12; 2 and 3].

Theorem 1. H-7 \(\Rightarrow \) DS. If \(E \) is metrizable, the implication can be reversed.

Proof. Assume H-7 and existence of a set \(B \) bounded in \(E \) which is not contained in any \(E_n \). Choose a sequence \(1 = n_1 \leq n_2 \leq n_3 \leq \cdots \) such that \(\overline{E_{n_k}} \subset E_{n_{k+1}} \) and \(b_k \in B \setminus E_{n_k}, k \in \mathbb{N} \).

Since \(b_1 \neq 0 \), there exists convex \(0 \)-nbhd \(G_1 \in E \) such that \(b_1 \notin G_1 + G_1 \). Put \(V_1 = G_1 \cap E_{n_1} \) and \(W_1 = \overline{V}_1 \). Then \(W_1 \subset (G_1 + G_1) \cap E_{n_2} \) and \(b_1 \notin W_1, \frac{1}{2} b_2 \notin W_1 \). Hence there exists convex \(0 \)-nbhd \(G_2 \in E \) such that \(b_1, \frac{1}{2} b_2 \notin W_1 + G_2 + G_2 \). Put \(V_2 = G_2 \cap E_{n_2} \) and \(W_2 = \overline{V}_1 + \overline{V}_2 \). Again \(W_2 \subset (W_1 + G_2 + G_2) \cap E_{n_3} \) and \(b_1, \frac{1}{2} b_2, \frac{1}{2} b_3 \notin W_2 \), etc. When the sequence \(\{W_k\} \) is constructed, then \(W = \bigcup \{W_k, k \in \mathbb{N}\} \) is a \(0 \)-nbhd in \(E \) which does not absorb \(B \).
Let \(\{G_p\} \) be a nested base for the topology of \(E \). Assume \(\overline{E_1^E} \) is not contained in any \(E_p \). Take \(x_p \in \overline{E_1^E} \setminus E_p \) and \(a_p > 0 \) such that \(a_p x_p \in G_p, p \in N \). Then \(B = \bigcup \{a_p x_p, p \in N\} \) is bounded in \(E \) and not contained in any \(E_p \).

Lemma 1. \(H-8 \iff \text{each } g \in E'_n \text{ has a continuous extension to } E_{n+1} \).

Proof. Assume \(H-8 \) and take \(g \in E'_n, f \neq 0 \). Choose \(x_0 \in E_n, f(x_0) \neq 0 \) and put \(F = F^{-1}(0) \). Since, by \(H-8 \), \(x_0 \notin \overline{E_{n+1}} \) there exists \(g \in E_{n+1}' \) such that \(g(x_0) = f(x_0) \) and \(g(x) = 0 \) for \(x \in \overline{E_{n+1}} \), that is \(g^{-1}(0) \supset F \) and \(g \) is the sought extension of \(g \).

Let \(F \) be a closed hyperplane in \(E_n \). Take \(f \in E_n' \) such that \(f^{-1}(0) = F \). If \(f \) has an extension \(g \) to \(E_{n+1} \) then for \(x \in E_n \setminus G, g(x) = f(x) \neq 0 \), and \(x \notin g^{-1}(0) = \overline{E_{n+1}} \).

Lemma 2. \(DS \& H-8 \iff \text{each set } B \subset E_n \text{ which is bounded in } E \text{ is bounded in } E_n \).

Proof. Assume \(B \subset E_n \), bounded in \(E \), but not bounded in \(E_n \). Then \(B \) is not weakly bounded in \(E_n \) and there is \(f_0 \in E_n' \) (real dual) which is not bounded on \(B \). For each \(k \in N \), take \(b_k \in B, f_0(b_k) > k \). By induction, choose \(f_p \in E_{n+p}' \) so that \(f_p \) is an extension of \(f_{p-1}, p \in N \). Then \(\bigcup \{f_p^{-1}(\infty, 1); p \in N\} \) is a 0-nbhd in \(E \) which does not absorb \(B \).

From Theorem 1 and Lemmas 1 and 2 it follows that:

Theorem 2. \(H-7 \& 8 \Rightarrow DS \& H-8 \Rightarrow DST \).

Proposition. \(H-4 \Rightarrow H-3 \& 8 \Rightarrow H-1 \& 8 \).

Proof. Evidently the if implications hold. To complete the cycle, assume \(H-1 \& 8 \). Take a set \(A \) closed and convex in \(E_n \). Without loss of generality, we may assume \(0 \in A \). Denote by \(g_f \) a continuous extension of \(f \in E_n' \) to \(E_{n+1} \). There exists \(M \subset E_n' \) such that \(A = \bigcap \{f^{-1}(\infty, 1); f \in M\} = \bigcap \{g_f^{-1}(\infty, 1); f \in M\} \cap E_n \supset A^E_{n+1} \), since \(E_n \) is closed in \(E_{n+1} \).

We have a diagram:

\[
\begin{array}{ccc}
3 \& 8 & \Rightarrow & 7 \& 8 & \Rightarrow & DS \& 8 \\
3 & \Downarrow & & \Downarrow & & \Downarrow \\
1 \& 2 & \Rightarrow & 4 & \Rightarrow & 7 \& 8 & \Rightarrow & DST \\
3 & \Downarrow & & \Downarrow & & \Downarrow \\
7 & \Rightarrow & DS
\end{array}
\]

The following examples will show that \(H-7 \& 8 \) do not imply \(H-4 \) and \(DST \& H-8 \) do not imply \(H-7 \).

Example 1. Take a Banach space \(X \) and its proper subspace \(Y \) (with the inherited topology). Put \(E_{2n-1} = X^n \times \{0\}^N, E_{2n} = X^n \times Y \times \{0\}^N, n \in N, \) all with the product topology. Then \(E = \bigcup \{E_n; n \in N\} \subset X^N \) has the topology inherited from \(X^N \), as well as all \(E_n \). Hence \(H-8 \) holds. Further \(E_{2n+1} = E_{2n+1}^E = E_{2n+1} \) and \(H-7 \) holds. On the other hand, \(H-3 \& 4 \) do not hold, since \(E_{2n+1}^E \neq E_{2n+1} \).

Example 2. Let \(\mathcal{D}[-n, n] = \{f \in C^\infty(R); \sup f \subset [-n, n]\} \) and \(\mathcal{D} = \text{indlim } \mathcal{D}[-n, n] \). For this inductive limit \(DST \) holds by Dieudonné-Schwartz Theorem. Take \(\varphi \in \mathcal{D} \), \(\supp \varphi = [-1, 1] \), \(A = \{\varphi((p + 1)x/pq); p, q \in N\} \), and put \(E_n = \text{sp}(A \cup \mathcal{D}[-n, n]), n \in N \), where \(\text{sp} \) stands for the span. We equip each \(E_n \),
with the topology inherited from \(\mathcal{D} \) and H-8 holds. Since \(\mathcal{D}[n, n] \subset E_n \), DST holds for the \(\text{ind lim } E_n \). On the other hand the closure of \(E_n \) in \(E \) contains functions \(\varphi(\frac{1}{q}x), q \in \mathbb{N} \), and since \(\varphi(\frac{1}{q}x) \notin E_s, s = 1, 2, \ldots, q - 1 \), H-7 does not hold.

Example 3. Let \(X, Y \) be the same as in Example 1. Put \(E_n = X^n \times Y^n \). Then \(E = X^N \cap \bigcup \{E_n; n \in \mathbb{N}\} \) with the topology inherited from \(X^N \). If \(B \) is the closed unit ball in \(X \), then \(B^N \cap E \) is bounded in \(E \) but not contained in any \(E_n \). Hence DS and H-3 & 7 do not hold. Further \(\overline{E_n} = E_{n+1} \) and H-1 & 4 do not hold, either. On the other hand, H-2 & 8 hold since the topology of \(E_n \) is inherited from \(E_{n+1} \).

Example 4. Put \(W(x) = \sqrt{1 + x^2}, x \in (-\infty, \infty) \), and \(E_n = \{f \in L^2(R); \|f\|_2 = \int_{\mathbb{R}} |W^{-1}f|^2 \, dx < +\infty\} \). The norm \(\| \cdot \|_n \) makes \(E_n \) into a Hilbert space. Since the set \(\mathcal{D} \) from Example 2 is dense in each \(E_n \), we have \(E_{n+p} = \overline{\mathcal{D}} E_{n+p} \subset \overline{E_{n+p}} \subset E_n \) and H-1, 2, 3, 4, 7 do not hold. But, by Theorem 4 in [2], DST holds.

To show that H-8 does not hold, take \(f_k = W^n x_{[-k, k]} \in E_n \) and put \(B = \{f_k; k \in \mathbb{N}\} \). Then \(\|f_k\|_n^2 = 2k \) and \(B \subset E_n \). Further \(\|f_k\|_{n+1}^2 \leq \pi \) and \(B \) is bounded in \(E_{n+1} \). If H-8 held \(B \) would be bounded in \(E_n \), by Lemma 2, which is not true.

References

Department of Mathematics, Washington State University, Pullman, Washington 99164

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use