DIEUDONNÉ-SCHWARTZ THEOREM ON BOUNDED SETS IN INDUCTIVE LIMITS. II

J. KUCERA AND C. BOSCH

Abstract. The Dieudonné-Schwartz Theorem [1, Chapter 2, §12] has been stated for strict inductive limits. In [3] it has been extended to inductive limits. Here the result of [3] is generalized. Also, the case when each set bounded in \(\text{ind lim } E_n \) is contained, but not necessarily bounded, in some \(E_n \) is considered.

Let \(E_1 \subset E_2 \subset \cdots \) be a sequence of locally convex spaces and \(E = \text{ind lim } E_n \) their inductive limit (with respect to the identity maps \(\text{id}: E_n \to E_{n+1} \)). The Dieudonné-Schwartz theorem states that a set \(B \subset E \) is bounded if and only if it is contained and bounded in some \(E_n \), provided that

- \(\text{(H-1)} \) each \(E_n \) is closed in \(E_{n+1} \), and
- \(\text{(H-2)} \) the topology of each \(E_n \) equals the topology induced in \(E_n \) by \(E_{n+1} \). It is convenient to introduce some further hypotheses:

- \(\text{(H-3)} \) each \(E_n \) is closed in \(E \),
- \(\text{(H-4)} \) each convex and closed set in \(E_n \) is closed in \(E_{n+1} \),
- \(\text{(H-7)} \) for any \(n \in \mathbb{N} \) there is \(p \in \mathbb{N} \) such that \(E_n \subset E_{n+p} \), where \(E_n^E \) is the closure of \(E_n \) in \(E \),
- \(\text{(H-8)} \) for any closed hyperplane \(F \) in \(E_n \), \((E_n \setminus F) \cap E_{n+1}^E = \emptyset \),
- \(\text{(DS)} \) each set \(B \) bounded in \(E \) is contained in some \(E_n \), and
- \(\text{(DST)} \) each set \(B \) bounded in \(E \) is contained and bounded in some \(E_n \).

The following implications: \(\text{H-1 & 2} \Rightarrow \text{H-3} \), \(\text{H-3} \Rightarrow \text{DS} \), \(\text{H-4} \Rightarrow \text{DST} \), and \(\text{H-4} \Rightarrow \text{H-3} \), are known, see [1, Chapter 2, §12; 2 and 3].

Theorem 1. \(\text{H-7} \Rightarrow \text{DS} \). If \(E \) is metrizable, the implication can be reversed.

Proof. Assume \(\text{H-7} \) and existence of a set \(B \) bounded in \(E \) which is not contained in any \(E_n \). Choose a sequence \(1 = n_1 \leq n_2 \leq n_3 \leq \cdots \) such that \(E_{n_k}^E \subset E_{n_{k+1}} \) and \(b_k \in B \setminus E_{n_k}, k \in \mathbb{N} \).

Since \(b_1 \neq 0 \), there exists convex 0-nbhd \(G_1 \) in \(E \) such that \(b_1 \notin G_1 + G_1 \). Put \(V_1 = G_1 \cap E_{n_1} \) and \(W_1 = V_1^E \). Then \(W_1 \subset (G_1 + G_1) \cap E_{n_2} \) and \(b_1 \notin W_1, \frac{1}{2} b_2 \notin W_1 \). Hence there exists convex 0-nbhd \(G_2 \) in \(E \) such that \(b_1, \frac{1}{2} b_2 \notin W_1 + G_2 + G_2 \). Put \(V_2 = G_2 \cap E_{n_2} \) and \(W_2 = V_2 + V_2^E \). Again \(W_2 \subset (W_1 + G_2 + G_2) \cap E_{n_3} \), and \(b_1, \frac{1}{2} b_2, \frac{1}{3} b_3 \notin W_2 \), etc. When the sequence \(\{W_k\} \) is constructed, then \(W = \bigcup \{W_k; k \in \mathbb{N}\} \) is a 0-nbhd in \(E \) which does not absorb \(B \).
Let \(\{G_p\} \) be a nested base for the topology of \(E \). Assume \(E^E_1 \) is not contained in any \(E_p \). Take \(x_p \in E^E_1 \setminus E_p \) and \(a_p > 0 \) such that \(a_p x_p \in G_p \), \(p \in N \). Then \(B = \bigcup \{a_p x_p, p \in N\} \) is bounded in \(E \) and not contained in any \(E_p \).

Lemma 1. \(H-8 \Leftrightarrow \) each \(g \in E_n' \) has a continuous extension to \(E_{n+1} \).

Proof. Assume \(H-8 \) and take \(g \in E_n' \), \(f \neq 0 \). Choose \(x_0 \in E_n \), \(f(x_0) \neq 0 \) and put \(F = F^{-1}(0) \). Since, by \(H-8 \), \(x_0 \notin E_{n+1}' \) there exists \(g \in E_{n+1}' \) such that \(g(x_0) = f(x_0) \) and \(g(x) = 0 \) for \(x \in F_{E_{n+1}} \), that is \(g^{-1}(0) \supset F \) and \(g \) is the sought extension of \(g \).

Let \(F \) be a closed hyperplane in \(E_n \). Take \(f \in E_n' \) such that \(f^{-1}(0) = F \). If \(f \) has an extension \(g \) to \(E_{n+1} \) then for \(x \in E_n \setminus G \), \(g(x) = f(x) \neq 0 \), and \(x \notin g^{-1}(0) = F_{E_{n+1}} \).

Lemma 2. \(DS \& H-8 \Rightarrow \) each set \(B \subseteq E_n \) which is bounded in \(E \) is bounded in \(E_n \).

Proof. Assume \(B \subseteq E_n \), bounded in \(E \), but not bounded in \(E_n \). Then \(B \) is not weakly bounded in \(E_n \) and there is \(f_0 \in E_n' \) (real dual) which is not bounded on \(B \). For each \(k \in N \), take \(b_k \in B, f_0(b_k) > k \). By induction, choose \(f_p \in E_{n+p}' \) so that \(f_p \) is an extension of \(f_{p-1} \), \(p \in N \). Then \(\bigcup \{f_p^{-1}(-\infty, 1); p \in N\} \) is a 0-nbd in \(E \) which does not absorb \(B \).

From Theorem 1 and Lemmas 1 and 2 it follows that:

Theorem 2. \(H-7 \& 8 \Rightarrow DS \& H-8 \Rightarrow DST \).

Proposition. \(H-4 \Leftrightarrow H-3 \& 8 \Leftrightarrow H-1 \& 8 \).

Proof. Evidently the if implications hold. To complete the cycle, assume \(H-1 \& 8 \). Take a set \(A \) closed and convex in \(E_n \). Without loss of generality, we may assume \(0 \in A \). Denote by \(g_f \) a continuous extension of \(f \in E_n' \) to \(E_{n+1} \). There exists \(M \subseteq E_n' \) such that \(A = \bigcap \{f^{-1}(-\infty, 1); f \in M\} = \bigcap \{g_f^{-1}(-\infty, 1); f \in M\} \cap E_n \supset \bar{A}^E_{n+1} \), since \(E_n \) is closed in \(E_{n+1} \).

We have a diagram:

\[
\begin{array}{ccc}
3 \& 8 & \Rightarrow & 7 \& 8 & \Rightarrow & DS \& 8 \\
3 & \Downarrow & & \Downarrow & & \Downarrow & \\
1 \& 2 & \Rightarrow & 4 & \Rightarrow & 7 \& 8 & \Rightarrow & DST \\
& \Downarrow & & \Downarrow & \Downarrow & \Downarrow & \\
3 & \Rightarrow & 7 & \Rightarrow & DS
\end{array}
\]

The following examples will show that \(H-7 \& 8 \) do not imply \(H-4 \) and \(DST \& H-8 \) do not imply \(H-7 \).

Example 1. Take a Banach space \(X \) and its proper subspace \(Y \) (with the inherited topology). Put \(E_{2n-1} = X^n \times \{0\}^N \), \(E_{2n} = X^n \times Y \times \{0\}^N \), \(n \in N \), all with the product topology. Then \(E = \bigcup \{E_n, n \in N\} \subset X^N \) has the topology inherited from \(X^N \), as well as all \(E_n \). Hence \(H-8 \) holds. Further \(E_{2n+1}^E = E_{2n+1} = E_{2n+1} \) and \(H-7 \) holds. On the other hand, \(H-3 \& 4 \) do not hold, since \(E_{2n+1} = E_{2n+1}' = E_{2n+1} \).

Example 2. Let \(\mathcal{D}[-n, n] = \{f \in C^\infty(R); \supp f \subseteq [-n, n]\} \) and \(\mathcal{D} = \text{indlim} \mathcal{D}[-n, n] \). For this inductive limit \(DST \) holds by Dieudonné-Schwartz Theorem. Take \(\varphi \in \mathcal{D} \), \(\supp \varphi = [-1, 1] \), \(A = \{\varphi((p + 1)x/pq); p, q \in N\} \), and put \(E_n = \text{sp}(A \cup \mathcal{D}[-n, n]), n \in N \), where \(\text{sp} \) stands for the span. We equip each \(E_n \).
with the topology inherited from \mathcal{D} and $H-8$ holds. Since $\mathcal{D}[-n, n] \subset E_n$, DST holds for the ind lim E_n. On the other hand the closure of E_n in E contains functions $\varphi(\frac{1}{x})$, $q \in \mathbb{N}$, and since $\varphi(\frac{1}{x}) \not\in E_s$, $s = 1, 2, \ldots, q - 1$, $H-7$ does not hold.

Example 3. Let X, Y be the same as in Example 1. Put $E_n = X^n \times Y^n$. Then $E = X^N \cap \bigcup \{E_n; n \in \mathbb{N}\}$ with the topology inherited from X^N. If B is the closed unit ball in X, then $B^N \cap E$ is bounded in E but not contained in any E_n. Hence DS and $H-3 \& 7$ do not hold. Further $\overline{E_n^{E_{n+1}}} = E_{n+1}$ and $H-1 \& 4$ do not hold, either. On the other hand, $H-2 \& 8$ hold since the topology of E_n is inherited from E_{n+1}.

Example 4. Put $W(x) = \sqrt{1 + x^2}$, $x \in (-\infty, \infty)$, and $E_n = \{f \in L^2(\mathbb{R}); \|f\|^2 = \int_{\mathbb{R}} |W^{-n}f|^2 dx < +\infty\}$. The norm $\| \cdot \|_n$ makes E_n into a Hilbert space. Since the set \mathcal{D} from Example 2 is dense in each E_n, we have $E_{n+p} = \mathcal{D} E_{n+p} \subset E_{n+p} E_{n+p} \subset \overline{E_n E}$ and $H-1, 2, 3, 4, 7$ do not hold. But, by Theorem 4 in [2], DST holds.

To show that $H-8$ does not hold, take $f_k = W^n x_{[-k,k]} \in E_n$ and put $B = \{f_k; k \in \mathbb{N}\}$. Then $\|f_k\|_n^2 = 2k$ and $B \subset E_n$. Further $\|f_k\|_{n+1}^2 \leq \pi$ and B is bounded in E_{n+1}. If $H-8$ held B would be bounded in E_n, by Lemma 2, which is not true.

References