Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The dimension of peak-interpolation sets


Author: Edgar Lee Stout
Journal: Proc. Amer. Math. Soc. 86 (1982), 413-416
MSC: Primary 32E25; Secondary 32F15
DOI: https://doi.org/10.1090/S0002-9939-1982-0671206-0
MathSciNet review: 671206
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The dimension of a peak-interpolation set in the boundary of a strongly pseudoconvex domain in $ {{\mathbf{C}}^N}$ does not exceed $ N - 1$.


References [Enhancements On Off] (What's this?)

  • [1] H. Alexander, A note on polynomial hulls, Proc. Amer. Math. Soc. 33 (1972), 389-391. MR 0294689 (45:3757)
  • [2] P. Alexandroff, Dimensionstheorie. Ein Beitrag zur Geometrie der abgeschlossen Mengen, Math. Ann. 106 (1932), 161-238. MR 1512756
  • [3] A. Andreotti and R. Narasimhan, A topological property of Runge pairs, Ann. of Math. (2) 76 (1962), 499-509. MR 0140714 (25:4128)
  • [4] E. Bishop, Holomorphic completions, analytic continuation, and the interpolation of seminorms, Ann. of Math. (2) 78 (1963), 468-500. MR 0155016 (27:4958)
  • [5] T. Duchamp and E. L. Stout, Maximum modulus sets, Ann. Inst. Fourier (Grenoble) 31 (1981), 37-69. MR 638616 (83d:32019)
  • [6] F. Frankl and L. Pontrjagin, Ein Knotensatz mit Anwendung auf die Dimensionstheorie, Math. Ann. 102 (1930), 785-789. MR 1512608
  • [7] F. Frankl, Charakterisierung der $ n$ $ - 1$-dimensonalen abgeschlossen Mengen der $ {{\mathbf{R}}^n}$, Math. Ann. 103 (1930), 784-787. MR 1512646
  • [8] R. Godement, Théorie des faisceaux, Hermann, Paris, 1964.
  • [9] H. Hurewicz and H. Wallman, Dimension theory, Princeton Univ. Press, Princeton, N. J., 1948.
  • [10] V. I. Kuz'minov, Homological dimension theory, Russian Math. Surveys 23 (5) (1968), 1-45. MR 0240813 (39:2158)
  • [11] W. Rudin, Peak-interpolation sets of class $ {C^1}$ Pacific J. Math. 75 (1978), 267-279. MR 0486630 (58:6346)
  • [12] -, Function theory in the unit ball of $ {{\mathbf{C}}^N}$, Springer-Verlag, New York, Heidelberg and Berlin, 1980.
  • [13] E. L. Stout, The theory of uniform algebras, Boyden and Quigley, Tarrytown-on-Hudson, N. Y., 1971. MR 0423083 (54:11066)
  • [14] A. E. Tumanov, A peak set for the disc algebra of metric dimension 2.5 in the three-dimensional unit sphere, Math. USSR Izv. 11 (1977), 353-359.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32E25, 32F15

Retrieve articles in all journals with MSC: 32E25, 32F15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1982-0671206-0
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society