TOTALLY REAL MINIMAL SUBMANIFOLDS
IN A COMPLEX PROJECTIVE SPACE

NORIO EJIRI

Abstract. We give a pinching theorem with respect to the scalar curvatures of
4-dimensional conformally flat totally real minimal submanifolds in a 4-dimensional
complex projective space.

1. Introduction. Among all submanifolds of an almost Hermitian manifold, there
are two typical classes: one is the class of holomorphic submanifolds and the other is
the class of totally real submanifolds. There have been many results in the theory of
holomorphic submanifolds; on the other hand, there have been only a few results in
the theory of totally real submanifolds.

H. Naitoh [2], M. Takeuchi [3] classified submanifolds in a real and complex space
form with parallel second fundamental form.

Among such examples, there exist three n-dimensional conformally flat totally real
minimal submanifolds in a complex projective space P_n of constant holomorphic
sectional curvature 4:

(i) a totally geodesic submanifold,
(ii) a flat torus,
(iii) a Riemannian product of $S^1(\sin a \cos a)$ and $S^{n-1}(\sin a)$, where $S^r(r)$ is an
n-dimensional sphere with radius r and $\tan a = \sqrt{n}$.

The purpose of this paper is to give a characterization of (ii) and (iii) of 4
dimension.

Theorem. Let M be a 4-dimensional compact orientable conformally flat totally real
minimal submanifold in P_4. If M has nonnegative Euler number and the scalar
curvature ρ of M is between 0 and 15/2, then ρ is 0 or 15/2 and M is (ii) ($\rho = 0$),
(iii) ($\rho = 15/2$) or its covering spaces.

Remark. If $n = 4$, B. Y. Chen and K. Ogiue’s result [1] implies that every compact
totally real minimal submanifold in P_4 with $\rho \geq 64/7$ is totally geodesic ($\rho = 12$).
The author is grateful to Professor K. Ogiue for his useful criticism.

2. Proof of Theorem. We use the same notations and terminologies as in [1]. It was
proved in [1] that the second fundamental form of the immersion satisfies

\[
\frac{1}{2} \Delta \| \sigma \|^2 = \| \nabla' \sigma \|^2 + \sum_{i,j} \text{tr}(A_i \ast A_j - A_j \ast A_i)^2 - \sum_{i,j} (\text{tr} A_i \ast A_j)^2 + 5 \| \sigma \|^2.
\]

Received by the editors January 8, 1982.

1980 Mathematics Subject Classification. Primary 53C40; Secondary 53C42.

Key words and phrases. Totally real submanifold, conformally flat, parallel second fundamental form.
Since
\[\sum_{i,j} \text{tr} (A_i^* A_j - A_j^* A_i)^2 = - \sum_{i,j,k,l} \left(\sum_m (h^*_{ikm} h_{ljm} - h^*_{ikm} h_{ljm}) \right)^2, \]
this, together with the equation of Gauss, implies
\[\sum_{i,j} \text{tr} (A_i^* A_j - A_j^* A_i)^2 = \| R \|^2 + 4\rho - 24. \]
By the same argument as above, we have
\[\sum_{i,j} (\text{tr} A_i^* A_j)^2 = \| S \|^2 - 6\rho + 36. \]
Combining (1) with (2) and (3), we obtain
\[\| A \|^2 = \| V' \|^2 - \| R \|^2 - \| S \|^2 + 5\rho. \]
From the assumption that \(M \) is conformally flat, we obtain
\[\| R \|^2 - 2\| S \|^2 + \frac{1}{2} \rho^2 = 0, \]
which, together with (4), asserts
\[\frac{1}{2} \Delta \| \sigma \|^2 = \| \nabla' \sigma \|^2 - \| R \|^2 - \| S \|^2 + \frac{1}{2} \rho^2 + 5\rho. \]
Taking the integrals of both sides of it and using Green's theorem, we have
\[\int_M \| \nabla' \sigma \|^2 * l_M = \int_M \left\{ \left(\frac{3}{2} \| S \|^2 - \frac{1}{2} \rho^2 - 5\rho \right) * l_M \right\}. \]
On the other hand, by the Gauss-Bonnet theorem, the Euler number \(\chi(M) \) of \(M \) is given by
\[\chi(M) = \frac{1}{32\pi^2} \int_M \left\{ \| R \|^2 - 4\| S \|^2 + \rho^2 \right\} * l_M. \]
It follows from (5) that
\[\chi(M) = \frac{1}{32\pi^2} \int_M \left\{ \frac{2}{3} \rho^2 - 2\| S \|^2 \right\} * l_M. \]
Combining (6) with (7), we get an integral formula:
\[48\pi^2 \chi(M) + \int_M \| \nabla' \sigma \|^2 * l_M = \int_M \frac{2}{3} \rho \left\{ \rho - \frac{15}{2} \right\} * l_M. \]
Theorem follows from the integral formula and results in [2, 3].

REFERENCES

Department of Mathematics, Tokyo Metropolitan University, Fukasawa, Setagaya, Tokyo, 158 Japan