FACTORIZATION IN CODIMENSION ONE IDEALS
OF GROUP ALGEBRAS

GEORGE WILLIS

Abstract. It is shown that if G is a locally compact group and I is a closed, two-sided ideal with codimension one in $L^1(G)$, then $I^2 = I$.

Let G denote a locally compact group, $L^1(G)$ be its group algebra with respect to left invariant Haar measure and $M(G)$ be the algebra of bounded Borel measures on G. As usual, we will identify $L^1(G)$ with the ideal of $M(G)$ consisting of measures which are absolutely continuous with respect to Haar measure. For each Banach algebra A, define

$$A^2 = \left\{ \sum_{k=1}^n a_k b_k \mid a_k, b_k \in A, k = 1, \ldots, n \right\}.$$

A question asked by B. E. Johnson in connection with certain automatic continuity problems (see [3, Example 6.3]) is whether $I^2 = I$ when I is a closed, two-sided, codimension one ideal in $L^1(G)$. This question may be answered immediately when G is amenable, because in that case every codimension one ideal, I, in $L^1(G)$ has bounded approximate units (see [5]) and so, by Cohen's factorization theorem [1, 11.10], every element of I is a product of two others. Here we answer Johnson's question in the nonamenable case.

Theorem. Let G be a locally compact group and I be a closed two-sided ideal with codimension one in $L^1(G)$. Then $I^2 = I$.

Proof. Let χ_I be the continuous character on G such that $I = \{ f \in L^1(G) \mid \int_G \chi_I(x)f(x) \, dx = 0 \}$ (see [4, 23.7]). Then the operator T_f, defined by $T_f(f) = \chi_I f$, is an automorphism of $L^1(G)$ and $T_I(I) = \{ f \in L^1(G) \mid \int_G f(x) \, dx = 0 \} = I_0(G)$. Thus it suffices to prove the theorem in the case when $I = I_0(G)$. (This reduction was pointed out to me by B. E. Johnson.) Also, define $J_0(G) = \{ \mu \in M(G) \mid \mu(G) = 0 \}$.

Let f be in $I_0(G)$. Then, since $L^1(G)$ has bounded approximate units [4, 20.27], it follows, by Cohen's factorization theorem, that there are elements a and b in $L^1(G)$ and h in $I_0(G)$ such that $f = a \ast h \ast b$. We will show that

$$h = \sum_{k=1}^4 \mu_k \ast v_k, \quad (\mu_k, v_k \in J_0(G), k = 1, 2, 3, 4).$$
The theorem will then follow because

\[f = a \ast h \ast b = \sum_{k=1}^{4} (a \ast \mu_k) \ast (v_k \ast b), \]

where \(a \ast \mu_k \) and \(v_k \ast b \) are in \(I_0(G) \) for \(k = 1, 2, 3, 4. \)

Now let \(r_1 \) and \(r_2 \) be the real and imaginary parts of \(h \), so that \(r_1 \) and \(r_2 \) are real valued functions on \(G \) and \(h = r_1 + ir_2 \). Then, since \(h \) is in \(I_0(G) \),

\[\int_G r_1(x) \, dx = 0 = \int_G r_2(x) \, dx, \]

and \(r_1 \) and \(r_2 \) are also in \(I_0(G) \). Define functions \(r_j^+ \) and \(r_j^- \) for \(j = 1, 2 \) by

\[r_j^+(x) = \begin{cases} r_j(x), & \text{if } r_j(x) \geq 0, \\ 0, & \text{otherwise,} \end{cases} \]

\[r_j^-(x) = \begin{cases} -r_j(x), & \text{if } r_j(x) \leq 0, \\ 0, & \text{otherwise,} \end{cases} \]

and define

\[\lambda_j = \int_G r_j^+(x) \, dx = \int_G r_j^-(x) \, dx \text{ because } r_j = r_j^+ - r_j^- \].

Finally, if \(r_j \neq 0 \) (so that \(\lambda_j > 0 \)), put \(t_j^\pm = r_j^\pm / \lambda_j \).

With \(t_j^\pm \) defined in this way we have that \(t_j^\pm(x) \geq 0 \) for every \(x \) in \(G \) and \(\int_G t_j^\pm(x) \, dx = 1 \), for \(j = 1, 2 \). Hence,

\[h = \lambda_1(e - t_1^-) - \lambda_1(e - t_1^+) + i\lambda_2(e - t_2^-) - i\lambda_2(e - t_2^+), \]

where \(\|t_j^\pm\| = 1 \) and \(e \) is the identity element in \(M(G) \), so that \(e - t_j^\pm \) is in \(J_0(G) \) for \(j = 1, 2 \).

The Theorem now follows because, if \(t \) in \(L^1(G) \) is such that \(t(x) \geq 0 \) for every \(x \) in \(G \) and \(\|t\| = 1 \), then \(e - t \) has a square root in \(J_0(G) \) defined by the binomial expansion

\[(e - t)^{1/2} = \sum_{n=0}^{\infty} \binom{1/2}{n} (-t)^n. \]

The series converges because the coefficients \(\{\binom{1/2}{n}\}_{n=0}^{\infty} \) form an \(l^1 \)-sequence and \(\|t^n\| = 1 \) for every \(n \). That \((e - t)^{1/2} \) is in \(J_0(G) \) follows because \(e - t \) is and because \(J_0(G) \) is the kernel of a multiplicative linear functional on \(M(G) \).

The last part of the proof in fact shows the following result for \(J_0(G) \).

Corollary. Let \(G \) be a locally compact group. Then \(J_0(G)^2 = J_0(G) \).

However, in spite of this, the theorem does not hold if \(L^1(G) \) is replaced by \(M(G) \).

It is shown in [2] that, if \(G \) is a nondiscrete abelian group, then there is a codimension one, closed ideal \(I \) in \(M(G) \) such that \(I^2 \neq I \).

The work in this paper formed part of my doctoral thesis completed at the University of Newcastle-upon-Tyne. I am grateful to Professor B. E. Johnson for his helpful supervision.
References

Department of Mathematics, University of New South Wales, Kensington, New South Wales, Australia 2033