Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A random ergodic theorem in von Neumann algebras


Author: Nghiem Dang Ngoc
Journal: Proc. Amer. Math. Soc. 86 (1982), 605-608
MSC: Primary 46L50; Secondary 28D99, 46L55
DOI: https://doi.org/10.1090/S0002-9939-1982-0674090-4
MathSciNet review: 674090
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: E. C. Lance has recently extended the Birkhoff ergodic theorem to noncommutative dynamical systems. Using Lance's result, we extend the random ergodic theorem of H. R. Pitt, S. M. Ulam, S. Kakutani and J. von Neumann to noncommutative context.


References [Enhancements On Off] (What's this?)

  • [1] J. P. Conze and N. Dang-Ngoc, Ergodic theorems for non commutative dynamical systems, Invent. Math. 46 (1978), 1-15. MR 0500185 (58:17870)
  • [2] N. Dang-Ngoc, Pointwise convergence of martingales in von Neumann algebras, Israel J. Math. 34 (1979), 273-280. MR 570886 (81g:46091)
  • [3] J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien, Gauthier-Villars, Paris, 1969.
  • [4] S. Kakutani, Random ergodic theorems and Markoff processes with a stable distribution, (Proc. Second Berkeley Sympos. on Mathematical Statistics and Probability, 1950), Univ. of California Press, Berkeley and Los Angeles, 1951, pp. 247-261. MR 0044773 (13:476a)
  • [5] E. C. Lance, Ergodic theorem for convex sets and operator algebras, Invent. Math. 37 (1976), 201-211. MR 0428060 (55:1089)
  • [6] -, Martingale convergence in von Neumann algebras, Math. Proc. Cambridge Philos. Soc. 84 (1978). MR 489568 (80d:46115)
  • [7] H. R. Pitt, Some generalizations of the ergodic theorem, Math. Proc. Cambridge Philos. Soc. 38 (1952), 325-343. MR 0007947 (4:219h)
  • [8] C. Ryll-Nardzewski, On the ergodic theorems. III. The random ergodic theorem, Studia Math. 14 (1954), 298-301. MR 0068611 (16:910j)
  • [9] S. M. Ulam and J. von Neumann, Random ergodic theorem, Bull. Amer. Math. Soc. 51 (1954), 660. MR 1067746 (92e:01067)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L50, 28D99, 46L55

Retrieve articles in all journals with MSC: 46L50, 28D99, 46L55


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1982-0674090-4
Keywords: von Neumann algebras, almost uniform convergence, ergodic theorem, random ergodic theorem
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society