Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A theory of interval iteration


Author: L. B. Rall
Journal: Proc. Amer. Math. Soc. 86 (1982), 625-631
MSC: Primary 65G10; Secondary 65J15
DOI: https://doi.org/10.1090/S0002-9939-1982-0674094-1
MathSciNet review: 674094
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A theory of interval iteration, based on a few simple assumptions, is given for the fixed point problem for operators in partially ordered topological spaces. A comparison of interval with ordinary iteration is made which shows that their properties are converse in a certain sense with respect to existence or nonexistence of fixed points. The theory of interval iteration is shown to hold without modification if the computation is restricted to a finite set of points, as in actual practice. In this latter case, interval iteration is shown to converge or diverge in a finite number of steps, for which an upper bound is given. By the introduction of a suitable iteration operator, the method of interval iteration is extended to the problem of solution of equations in linear spaces.


References [Enhancements On Off] (What's this?)

  • [1] G. Alefeld, Intervallanalytische Methoden bei nichtinearen Gleichungen, Jahrb. Überblicke Math. 1979 (1979), 63-78. MR 554359 (81a:65049)
  • [2] G. Birkhoff, Lattice theory, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 25, Amer. Math. Soc., Providence, R. I., 1948. MR 0029876 (10:673a)
  • [3] O. Caprani and K. Madsen, Mean value forms in interval analysis, Computing 25 (1980), 147-154. MR 620389 (83f:65063)
  • [4] R. Krawczyk, Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken, Computing 4 (1969), 187-201. MR 0255046 (40:8253)
  • [5] -, Interval extensions and interval iterations, Computing 24 (1980), 119-129. MR 620082 (82f:65052)
  • [6] R. E. Moore, Interval analysis, Prentice-Hall, Englewood Cliffs, N. J., 1966. MR 0231516 (37:7069)
  • [7] -, A test for existence of solutions to nonlinear systems, SIAM J. Numer. Anal. 14 (1977), 611-615. MR 0657002 (58:31801)
  • [8] -, Methods and applications of interval analysis, SIAM Studies in Appl. Math., vol. 2, SIAM, Philadelphia, Pa., 1979. MR 551212 (81b:65040)
  • [9] R. E. Moore and S. T. Jones, Safe starting regions for iterative methods, SIAM J. Numer. Anal. 14 (1977), 1051-1065. MR 0468147 (57:7985)
  • [10] K. Nickel, On the Newton method in interval analysis, MRC Tech. Summary Rept. No. 1136, Univ. of Wisconsin-Madison, 1971.
  • [11] -, Stability and convergence of monotonic algorithms, J. Math. Anal. Appl. 54 (1976), 157-172. MR 0413480 (54:1594)
  • [12] J. M. Ortega and W. C. Rheinboldt, Iterative solution of nonlinear equations in several variables, Academic Press, New York, 1970. MR 0273810 (42:8686)
  • [13] L. B. Rall, A comparison of the existence theorems of Kantorovich and Moore, SIAM J. Numer. Anal. 17 (1980), 148-161. MR 559469 (81k:65052)
  • [14] W. Sierpiński, General topology (C. Cecilia Krieger, translator), Univ. of Toronto Press, Toronto, 1952. MR 0050870 (14:394f)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 65G10, 65J15

Retrieve articles in all journals with MSC: 65G10, 65J15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1982-0674094-1
Keywords: Fixed point problems, interval iteration, convergence and divergence, existence and nonexistence of solutions, lower and upper bounds, finite convergence, solution of equations
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society