Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Inequalities of Gauss-Bonnet type for a convex domain
HTML articles powered by AMS MathViewer

by B. V. Dekster PDF
Proc. Amer. Math. Soc. 86 (1982), 632-637 Request permission

Abstract:

Let $N$ be a compact convex $n$-dimensional Riemannian manifold with a boundary $\partial N$ having normal curvatures $\geqslant \kappa > 0$. Suppose the sectional curvature $> - {\kappa ^2}$ in $N$. Let $H$ be the integral mean curvature of $\partial N$, $V$ be the volume of $N$, ${k_{sc}}$ be the scalar curvature and ${\bar k_R}(p)$, $p \in N$, be the maximum Ricci curvature at $p$. Then \[ H \geqslant \frac {{n - 2}} {2}{\kappa ^2}V - \frac {1} {{2(n - 1)}}\int _N {{k_{sc}}\;dV} ,\quad H \geqslant (n - 2){\kappa ^2}V - \frac {1} {{n - 1}}\int _N {{{\bar k}_R}\;dV.} \] Let ${N_ - }$ denote $N$ with nonpositive sectional curvature. Let $G$ be the integral Gauss curvature of $\partial {N_ - }$. Then $G \geqslant - {\kappa ^{n - 2}}\int _{N - } {{{\bar k}_R}\;dV}$. These three estimates are sharp. For a ball in $3$-dimensional hyperbolic space, the ratio of the right-hand part of each estimate to its left-hand part (i.e. $V({\kappa ^2} + 3)/2H$, $V({\kappa ^2} + 1)/H$ and $2\kappa V/G$ respectively) approaches 1 as the ${\operatorname {radius}} \to \infty$. The same ratios for the estimates \[ H \geqslant - \frac {1} {{2(n - 1)}}\int _N {{k_{sc}}\;} dV\quad {\text {and}}\quad H \geqslant - \frac {1} {{n - 1}}\int _N {{{\bar k}_R}\;dV} \] (rougher ones but without $\kappa$) approach $\tfrac {3} {4}$ and $\tfrac {1} {2}$ respectively.
References
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C20, 53C40, 53C45
  • Retrieve articles in all journals with MSC: 53C20, 53C40, 53C45
Additional Information
  • © Copyright 1982 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 86 (1982), 632-637
  • MSC: Primary 53C20; Secondary 53C40, 53C45
  • DOI: https://doi.org/10.1090/S0002-9939-1982-0674095-3
  • MathSciNet review: 674095