TAMING COMPACTA IN E^4

JOHN J. WALSH AND DAVID G. WRIGHT

ABSTRACT. A compactum X in Euclidean 4-space E^4 is shown to be tame if its projection into E^3 is 1-dimensional and if $\dim L \cap X \leq 0$ for each vertical line L in E^4. An essential ingredient is the result due to J. L. Bryant and D. L. Sumners that a 1-dimensional compactum in a 3-dimensional hyperplane of E^4 is tame in E^4.

A 0-dimensional or 1-dimensional compact subset X of Euclidean 4-space E^4 is said to be tame in E^4 provided the embedding dimension of X is ≤ 1; i.e., for each open cover \mathcal{U} of E^4 and closed 2-dimensional subpolyhedron $K \subset E^4$, there is a self-homeomorphism h of E^4 \mathcal{U}-close to the identity with $h(K) \cap X = \emptyset$. For 0-dimensional compacta and 1-dimensional polyhedra, this notion of tameness is equivalent to the usual one $[Br_1, Br_2]$. Depending on the notion of tameness to be verified, either the Klee trick $[K]$ or the fact that 1-dimensional subpolyhedra of E^3 can be pushed off 0-dimensional compact subsets of E^3 establishes that a 0-dimensional compact subset of a 3-dimensional hyperplane of E^4 is tame in E^4. The examples of Bothe $[Bo]$ and McMillan and Row $[M-R]$ of tangled embeddings of 1-dimensional compacta in E^3 necessitated a different argument, supplied by Bryant and Sumners in $[Br-S]$, to establish that a 1-dimensional compact subset of a 3-dimensional hyperplane is tame in E^4. In this note these results are extended to

Theorem. A compact subset $X \subset E^4$ is tame provided, for some projection $p: E^4 \to E^3$ onto a 3-dimensional hyperplane, $\dim p(X) = 1$ and

$$\dim X \cap p^{-1}(w) \leq 0 \text{ for each } w \in E^3.$$

Appropriate formulations of the result for compact subsets of E^n ($n \neq 4$) that have codimension ≥ 3 are established in $[Wr, \text{Theorem 5.3}]$, the principal tool being that codimension ≥ 3 compact subsets of E^n ($n \neq 4$) are tame provided their complements are 1-ULC (see $[E]$ for a thorough discussion). The proof that follows involves applications of the previously mentioned Bryant-Sumners’ result interspersed with purely vertical moves to produce homeomorphisms that move 2-complexes off X.

Euclidean n-space is denoted by E^n. The product $E^4 = E^3 \times E^1$ determines a projection map $p: E^4 \to E^3$. A partition of E^1 is a strictly increasing function from the integers to E^1 that is neither bounded above nor below; it is denoted $\{a_i\}$. The partition is said to have mesh δ provided $a_{i+1} - a_i \leq \delta$ for each i. For a subset $W \subset E^3$, we set $W^i = W \times [a_{i-1}, a_i]$. For integers $p < q$, the collection

Received by the editors January 12, 1982.

1980 Mathematics Subject Classification. Primary 57N35, 57N45; Secondary 57N15, 57N75.

Key words and phrases. Tame embeddings, topological embeddings of compacta, 4-dimensional Euclidean space.

© 1982 American Mathematical Society

0002-9939/82/0000-0266/101.75
\[C = \{ W^i : p \leq i \leq q \} \] is called a chain for \(W \) with respect to the partition \(\{ a_i \} \) and the length of \(C \) is set equal to \(a_q - a_{p-1} \).

Lemma. If \(X \subset E^4 \) is a compact subset and \(\dim(p^{-1}(s) \cap X) \leq 0 \) for some \(s \in E^3 \), then, for each \(\epsilon > 0 \), there is a neighborhood \(U \subset E^3 \) of \(s \) and a number \(\delta > 0 \) such that any chain for \(U \) with respect to a partition of mesh \(\delta \) that has length \(\geq \epsilon \) contains an element that does not meet \(X \).

Proof. If the lemma were false, it would be an easy matter to show that \(\dim(p^{-1}(s) \cap X) = 1 \). But this would contradict the hypothesis of the lemma, and the lemma is established.

Proof of Theorem. Given \(\epsilon > 0 \), use the lemma and the compactness of \(p(X) \) to produce a finite collection of closed sets \(F_1, F_2, \ldots, F_m \) that cover \(E^3 \) and a \(\delta > 0 \) such that for each \(i \) any chain for \(F_i \) with respect to a partition of mesh \(\delta \) that has length \(\geq \epsilon \) contains an element that does not meet \(X \). Assume that \(\delta < \epsilon \) and, specifying a partition by setting \(a_i = \delta \cdot i \), assume without loss of generality that \(X \subset E^3 \times [a_0, a_n] \).

Starting with a closed 2-dimensional subpolyhedron \(K \subset E^4 \), we proceed to produce a self-homeomorphism of \(E^4 \) that moves points less than a distance \(3\epsilon \) and that moves \(K \) off \(X \). The homeomorphism arises as a composition \(H_n \circ G_n \) of self-homeomorphisms of \(E^4 \) where \(H_n \) changes only the \(E_1 \) coordinate of points and that by less than \(2\epsilon \) and \(G_n \) moves points less than distance \(\epsilon \). Whenever \((F_j \times [a_i, a_{i+1}] \cap X = \emptyset \), the center slice \(F_j \times \{ a_i + \delta/2 \} \) is called a safety zone. The control on the homeomorphism \(H_n \) will be achieved by not permitting \(H_n \) to move any point that lies in a safety zone, for the choice of \(F_j \)'s establishes a sufficient number of safety zones that \(H_n \) cannot move a point a distance \(\geq 2\epsilon \).

Set \(B_i = p(X \cap (E^3 \times [a_{i-1}, a_i])) \), \(A_i = \bigcup \{ F_j : F_j \cap B_i = \emptyset \} \), \(Y_i = X \cap (E^3 \times [a_0, a_i]) \), and \(X_i = p(X) \times \{ a_i \} \). The homeomorphisms \(H_n \) and \(G_n \) are the end products of an inductive construction that produces homeomorphisms \(H_i \) and \(G_i \) of \(E^4 \), \(0 \leq i \leq n \), satisfying:

1. \(H_0 = G_0 = \text{identity homeomorphism} \);
2. \(H_i \circ G_i(K) \cap Y_i = \emptyset \) for \(1 \leq i \leq n \);
3. \(H_i \) changes only the \(E_1 \) coordinate of points and moves no point that lies in a safety zone; and
4. \(G_i \) moves points less than \(\epsilon \).

The inductively constructed homeomorphisms \(G_i \) and \(H_i \) satisfy

\[
G_i^{-1} \circ H_i^{-1}(Y_i) \cap K = \emptyset
\]

by (2), where we set \(Y_0 = \emptyset \). The sets \(X_i \) and, therefore, \(G_i^{-1} \circ H_i^{-1}(X_i) \) are tame by \([Br-S]\). Choose a homeomorphism \(g \) of \(E^4 \) with \(g \circ G_i^{-1} \circ H_i^{-1}(X_i) \cap K = \emptyset \) so close to the identity that \(g \circ G_i^{-1} \circ H_i^{-1}(Y_i) \cap K = \emptyset \) and that, setting \(G_{i+1} = G_i \circ g^{-1} \), condition (4) is satisfied. The homeomorphism \(H_i \circ G_{i+1} \) moves \(K \) off \(Y_i \) and \(X_i \).

Choose \(0 < d < \delta/2 \) so that

\[
H_i \circ G_{i+1}(K) \cap p(X) \times [a_i - d, a_{i+1}] = \emptyset.
\]

A homeomorphism \(h \) of \(E^4 \) equaling the identity outside \(E^3 \times [a_i - d, a_{i+1} + \delta/2] \) and on each safety zone and moving only the \(E_1 \) coordinate of points is specified as follows. Name a map \(\phi : E^3 \to [a_i, a_{i+1}] \) such that \(\phi(A_{i+1}) = a_i \) and \(\phi(B_{i+1}) = a_{i+1} \), require that \(h(x, a_i - d) = (x, a_i - d) \), \(h(x, a_i) = (x, \phi(x)) \), and...
h(x, a_i+1 + δ/2) = (x, a_i+1 + δ/2), and extend in the obvious piecewise linear manner. Finally, it is easily checked that G_{i+1} and $H_{i+1} = h \circ H_i$ satisfy the appropriate conditions.

Having established that X has embedding dimension at most one, we conclude that X has dimension at most one; of course, applying [H-W, Theorem V17] to the restriction $p|X: X \to p(X)$ immediately reveals the latter.

REFERENCES

Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37994-1300 (Current address of J. J. Walsh)

Current address (D. G. Wright): Department of Mathematics, Utah State University, Logan, Utah 84322