Inner amenability and fullness

Author:
Marie Choda

Journal:
Proc. Amer. Math. Soc. **86** (1982), 663-666

MSC:
Primary 46L35

DOI:
https://doi.org/10.1090/S0002-9939-1982-0674101-6

MathSciNet review:
674101

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a countable group which is not inner amenable. Then the II-factor is full in the following cases:

(1) is given by the group measure space construction from a triple with respect to a strongly ergodic measure preserving action of on a probability space .

(2) is the crossed product of a full II-factor by with respect to an action.

**[1]**C. A. Akemann and M. Walter,*Unbounded negative definite functions*, Canad. J. Math.**33**(1981), 862-871. MR**634144 (83b:43009)****[2]**M. Choda and Y. Watatani,*Fixed point algebra and property*T, Math. Japon.**27**(1982), 263-266. MR**655229 (83i:46065)****[3]**M. Choda,*Property**and fullness of the group measure space construction*, Math. Japon.**27**(1982), 535-539. MR**667819 (83j:46073)****[4]**A. Connes,*Almost periodic states and factors of type*III, J. Funct. Anal.**16**(1974), 415-445. MR**0358374 (50:10840)****[5]**A. Connes and B. Weiss,*Property**and asymptotically invariant sequences*, Israel J. Math.**37**(1980), 209-210. MR**599455 (82e:28023b)****[6]**E. G. Effros,*Property**and inner amenability*, Proc. Amer. Math. Soc.**47**(1975), 483-486. MR**0355626 (50:8100)****[7]**Y. Haga and Z. Takeda,*Correspondence between subgroups and subalgebras in a cross product von Neumann algebra*, Tôhoku Math. J.**21**(1972), 167-190. MR**0380439 (52:1339)****[8]**D. A. Kazhdan,*Connection of the dual space of a group with the structure of its closed subgroups*, Funct. Anal. Appl.**1**(1967), 63-65. MR**0209390 (35:288)****[9]**F. Murray and J. von Neumann,*On rings of operators*. IV, Ann. of Math.**44**(1943), 716-808. MR**0009096 (5:101a)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
46L35

Retrieve articles in all journals with MSC: 46L35

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1982-0674101-6

Keywords:
Factor,
group algebra,
crossed product,
ergodicity

Article copyright:
© Copyright 1982
American Mathematical Society