SPACES FOR WHICH THE GENERALIZED CANTOR SPACE 2^J IS A REMAINDER

YUSUF ÜNLÜ

Abstract. Let X be a locally compact noncompact space, m be an infinite cardinal and $|J| = m$. Let $F(X)$ be the algebra of continuous functions from X into \mathbb{R} which have finite range outside of an open set with compact closure and let $I(X) = \{g \in F(X) : g \text{ vanishes outside of an open set with compact closure}\}$. Conditions on $R(X) = F(X)/I(X)$ and internal conditions are obtained which characterize when X has 2^J as a remainder.

1. Introduction. Throughout this paper all spaces are assumed to be completely regular and Hausdorff. We let LC denote the class of all locally compact and noncompact spaces. A compactification of a space X is a compact space which contains X as a dense subspace and a remainder of X is any $aX \setminus X$ where aX is a compactification of X. If aX and bX are two compactifications of X, then $aX \leq bX$ if there is a continuous function $g : aX \to bX$ such that $g(x) = x$ for each $x \in X$. For a set A let $|A|$ denote the cardinality of A.

Recently Hatzenbuhler and Mattson [HM] have obtained an internal characterization which characterizes when a given space $X \in \text{LC}$ has every compact metric space as a remainder. The condition given by them assures that if X satisfies this condition the Cantor space $2^\mathbb{N}$ is a remainder of X, where \mathbb{N} is the set of natural numbers and 2 is the discrete space $\{0, 1\}$. Their result then follows from the fact that every compact metric space is a continuous image of $2^\mathbb{N}$. It is thus natural to ask when for a given cardinal m and a space $X \in \text{LC}$, 2^J is a remainder of X where $|J| = m$. In this connection we briefly recall the construction of the Freudenthal compactification.

Definition 1.1. Let X be a space. An ordered pair (G, H) is called an f-pair in X if G and H are disjoint open subsets of X and $X \setminus (G \cup H)$ is compact.

Let $X \in \text{LC}$. For subsets A and B of X, we define the relation δ by $A \delta B$ if and only if there is an f-pair (G, H) in X such that $\text{cl}_X A \subseteq G$ and $\text{cl}_X B \subseteq H$. It is well known that δ is a compatible proximity relation on X and the Samuel compactification fX corresponding to this proximity relation is the Freudenthal compactification of X [W, 41.2, 41B]. It is known [R] that $fX \setminus X$ is zero dimensional and if aX is any compactification of X such that $aX \setminus X$ is zero dimensional, then $aX \leq fX$. By a zero dimensional space, we mean a space which has a basis consisting of clopen, i.e., both
closed and open sets. It follows in particular that if \(2^J \) is a remainder of \(X \), then \(2^J \) is a continuous image of \(fX \setminus X \).

In \([E]\) Efimov introduces the concept of a dyadic family of power \(m \) and proves that \([0, 1]^J \), where \(|J| = m \), is a continuous image of a compact space \(Y \) if and only if \(Y \) has a dyadic family of power \(m \). In the view of these observations, one naturally expects to obtain an internal characterization, via the Freudenthal compactification which characterizes when a space \(X \in LC \) has \(2^J \) as a remainder. For this purpose we slightly modify Efimov's definition of a dyadic family.

Definition 1.2. Let \(X \) be a space, \(m \) be a cardinal and \(J \) be a set with \(|J| = m \). A family \(\{(U^{-1}_j, U^+_j) : j \in J\} \) consisting of \(f \)-pairs in \(X \) is called a *dyadic family of power \(m \)* in \(X \) if for every finite collection of distinct elements \(j_1, \ldots, j_n \) of \(J \) and any finite sequence \(i_1, \ldots, i_n \) in \(\{-1, 1\} \), \(\text{cl}_X(U^{-1}_{j_1} \cap \cdots \cap U^{-1}_{j_n}) \) is not compact.

We prove that if \(X \in LC \), \(m \) is an infinite cardinal and \(|J| = m \), then \(2^J \) is a remainder of \(X \) if and only if \(X \) has a dyadic family of power \(m \). We also give an algebraic characterization which is equivalent to the one given above.

For a space \(X \) let \(\kappa(X) \) denote the set of all open subsets of \(X \) with compact closure in \(X \). Let \(C(X) \) be the algebra of all continuous functions from \(X \) into the set of real numbers \(\mathbb{R} \).

Definition 1.3. Let \(X \in LC \). We set

\[
F(X) = \{ g \in C(X) : g(X \setminus V) \text{ is finite for some } V \in \kappa(X) \},
\]

\[
I(X) = \{ g \in C(X) : X \setminus g^{-1}(0) \in \kappa(X) \}.
\]

Clearly \(F(X) \) is a subalgebra of \(C(X) \) and \(I(X) \) is an ideal in \(F(X) \). We set \(R(X) = F(X)/I(X) \).

We prove that if \(X \in LC \), then the structure space \(\text{Max} F(X) \) of \(F(X) \) can be identified with \(fX \). We also prove that if \(m \) is an infinite cardinal and \(|J| = m \), then \(2^J \) is a remainder of \(X \) if and only if the group of units of \(R(X) \) has a subgroup \(G \) of cardinality \(m \) such that \(g^2 = 1 \) for every \(g \in G \) and \(G \) is linearly independent over \(\mathbb{R} \).

2. **Structure space of \(F(X) \).** If \(g \) is a function from a set \(A \) into \(\mathbb{R} \), \(Z(g) = \{ a \in A : g(a) = 0 \} \) is the zero set of \(g \). If \(\alpha \in \mathbb{R} \), then we will use the same notation \(\alpha \) to denote the constant function from \(A \) into \(\mathbb{R} \) whose value is \(\alpha \). Let \(X \in LC \). It is easy to verify that \(\{ X \setminus Z(g) : g \in I(X) \} = B_X \) forms a base for open sets in \(X \). For \(x \in X \) let us define \(M_x = \{ g \in F(X) : g(x) = 0 \} \). Then \(M_x \) is a maximal ideal in \(F(X) \) and if \(x \) and \(y \) are distinct elements of \(X \), then \(M_x \neq M_y \) since \(B_X \) forms a base for open sets in \(X \). A maximal ideal \(M \) of \(F(X) \) is, by definition, *fixed* if \(M = M_x \) for some \(x \in X \), otherwise \(M \) is *free*.

Let \(S \) be any commutative ring with identity. The structure space of \(S \) is the set of all maximal ideals \(\text{Max} S \) of \(S \) topologized by taking the sets of the form \(E(s) = \{ M \in \text{Max} S : s \in M \} \) as a base for closed sets \([GJ, 7M]\). \(\text{Max} S \) with this topology is compact but not necessarily Hausdorff. If \(S \) is von Neumann regular, then \(\text{Max} S \) is Hausdorff. Recall that \(S \) is von Neumann regular if for each \(a \in S \), there exists \(b \in S \) such that \(a^2b = a \).
Proposition 2.1. Let $X \in \text{LC}$ and $M \in \text{Max } F(X)$.
(a) $R(X)$ is von Neumann regular and hence $\text{Max } R(X)$ is a compact Hausdorff space.
(b) M is free if and only if $I(X) \subseteq M$.

Proof. (a) Let $g \in F(X)$ and $V \in \kappa(X)$ be such that $g(X \setminus V) = \{\alpha_1, \ldots, \alpha_n\}$. Note that $X \setminus V \neq \emptyset$ since X is not compact. Let $K = \text{Z}(g)$ and $L = g^{-1}(\{\alpha_i : \alpha_i \neq 0\})$. Then K and L are disjoint zero sets in X. Thus there is a continuous function $h: X \to [0, 1]$ such that $K \subseteq \text{int}_X Z(h) \subseteq Z(h) = A$ and $L \subseteq h^{-1}(1) \subseteq X \setminus \text{int}_X Z(h) = B$. A and B are closed sets in X and $A \cup B = X$. Define $w: X \to \mathbb{R}$ by $w(x) = 0$ if $x \in A$ and $w(x) = h(x)/g(x)$ if $x \in B$. w is well defined and continuous. Note that $w(X \setminus V) \subseteq \{0\} \cup \{1/\alpha_i : \alpha_i \neq 0\}$. It follows that $w \in F(X)$ and $g^2w - g \in I(X)$. Thus $R(X)$ is von Neumann regular.

(b) Let $x \in X$ and $V \in \kappa(X)$ be a neighbourhood of x. Then there is a continuous function $g: X \to [0, 1]$ such that $g(x) = 1$ and $g(X \setminus V) = \{0\}$. Thus $g \in I(X) \setminus M_x$. Consequently a fixed maximal ideal cannot contain $I(X)$. Now, let M be a free maximal ideal. Suppose that there exists $g \in I(X) \setminus M$. Since M is maximal, then $gk - 1 \in M$ for some $k \in F(X)$. Let $V = X \setminus \text{Z}(g) \in \kappa(X)$. For each $x \in \text{cl}_X V$, $M \setminus M_x \neq \emptyset$. Thus $\text{cl}_X V \subseteq \bigcup \{X \setminus \text{Z}(t) : t \in M\}$. Since $\text{cl}_X V$ is compact, then there are $t_1, \ldots, t_n \in M$ such that $\text{cl}_X V \subseteq \bigcup \{X \setminus \text{Z}(t_i) : i = 1, \ldots, n\}$. Let $t = t_1^2 + \cdots + t_n^2 \in M$. Then $\text{cl}_X V \subseteq X \setminus \text{Z}(t)$. There is an $0 < \varepsilon < 1$ such that $t(x) \geq \varepsilon$ for each $x \in \text{cl}_X V$. If $r = (gk - 1)^2 + t$, then $r \in M$ and $r(x) \geq \varepsilon$ for all $x \in X$. Thus M contains an invertible element, a contradiction. So $M \supseteq I(X)$.

We have already seen that the function $x \to M_x$ sets up a one-to-one correspondence between X and the fixed maximal ideals in $F(X)$. Hence X already constitutes an index set for the fixed maximal ideals in $F(X)$. We enlarge it to an index set fX for $\text{Max } F(X)$, so that $\text{Max } F(X) = \{M_y : y \in fX\}$ and for distinct $y, z \in fX$, $M_y \neq M_z$. For $g \in F(X)$ let $F(g) = \{y \in fX : g \in M_y\}$. If $\theta: fX \to \text{Max } F(X)$ is the function defined by $\theta(y) = M_y$, then $\theta^{-1}(F(g)) = F(g)$ for $g \in F(X)$. Thus $\{F(g) : g \in F(X)\}$ forms a base for closed sets of a topology on fX and with this topology fX is compact and homeomorphic to $\text{Max } F(X)$. Theorem 2.2. Let $X \in \text{LC}$. For a subset A of X let $A^* = \text{cl}_{fX} A \setminus X$.

(a) fX is a compactification of X and $fX \setminus X$ is homeomorphic to $\text{Max } R(X)$.
(b) Each function $g \in F(X)$ has a unique continuous extension $g^*: fX \to R$ and $F(g) = Z(g^*)$.
(c) Let (G, H) be an f-pair in X. Then there exist $g \in F(X)$ and $W \in \kappa(X)$ such that $X \setminus (G \cup H) \subseteq W$, $\text{cl}_X G \setminus W \subseteq g^{-1}(-1)$ and $\text{cl}_X H \setminus W \subseteq g^{-1}(1)$. If U is any open subset of X, then $(G \cap U)' = G' \cap U'$. In particular G' and H' are disjoint clopen subsets of X' whose union is X'.
(d) fX is the Freudenthal compactification of X.

Proof. (a) We have already observed that fX is compact. By 2.1(b) if $g \in I(X)$, then $fX \setminus F(g) = X \setminus Z(g)$. It follows that the topology on X coincides with the
subspace topology inherited from fX. Also, $X = \bigcup \{X \setminus Z(g): g \in I(X)\} = \bigcup \{fX \setminus F(g): g \in I(X)\}$. So X is an open subspace of fX. If $h \in F(X)$ and $fX \setminus F(h) \neq \emptyset$, then $h \neq 0$. So $x \in fX \setminus F(h)$ for some $x \in X$. Thus X is dense in fX.

We now proceed to show that fX is Hausdorff. Let $y, z \in fX$ and $y \neq z$. If $y, z \in X$, then y and z can be separated by open sets in X and hence in fX since X is open in fX. Thus suppose without loss of generality that $z \notin X$. Let $g \in M_y \setminus M_z$. By 2.1(a), $g^2h - g \in I(X) \subseteq M_z$ for some $h \in F(X)$. Let $b = gh - 1$. Since M_z is prime, then $b \in M_z$. Note also that $b \notin M_y$. Let $V = X \setminus Z(gb) \in k(X)$. Let $W \in k(X)$ be such that $cl_X V \subseteq W$. There is a continuous function $u: X \rightarrow [0,1]$ such that $cl_X V \subseteq Z(u)$ and $X \setminus W \subseteq Z(u - 1)$. Note that $u - 1 \in I(X)$ and $ugb = 0$. So $z \in fX \setminus F(ug)$, $y \in fX \setminus F(b)$ and $F(ug) \cup F(b) = fX$. This proves that fX is Hausdorff. To see that X' and $P = \text{Max } R(X)$ are homeomorphic, consider the natural homomorphism $\phi: F(X) \rightarrow R(X)$. ϕ induces a bijection $\phi': P \rightarrow X'$ defined by $\phi'(N) = z$ if and only if $\phi^{-1}(N) = M_z$. ϕ' is continuous since $(\phi)^{-1}(F(g) \setminus X) = E(g + I(X))$ for every $g \in F(X)$. Both X' and P are compact Hausdorff, thus ϕ' is a homeomorphism.

(b) Let $g \in F(X)$ and $V \in k(X)$ be such that $g(X \setminus V) = \{a_1, \ldots, a_n\}$ where $a_i \neq a_j$ for $i \neq j$. Let $h = (g - a_1) \cdots (g - a_n)$. Since $X \setminus Z(h) \subseteq V$, then $h \in I(X)$. So $fX = cl_X V \cup F(h) = cl_X V \cup F(g - a_1) \cup \cdots \cup F(g - a_n)$. If $i \neq j$, then $0 \neq a_i - a_j \notin M_y$. For any $y \in fX$. Thus $F(g - a_i) \cap F(g - a_j) = \emptyset$ for $i \neq j$. Moreover if $x \in cl_X V \cap F(g - a_i)$, then $g(x) = a_i$. We define g^e: $fX \rightarrow R$ by $g^e(y) = a_i$ if $y \in F(g - a_i)$ and $g^e(y) = g(y)$ if $y \in cl_X V$. Then g^e is well defined and continuous. It is routine to verify that $F(g) = Z(g^e)$ and g^e extends g.

(c) Let $L = X \setminus (G \cup H)$. Let $V, W \in k(X)$ be such that $L \subseteq W \subseteq cl_X W \subseteq V$. Then $C = cl_X G \cap cl_X V \setminus W$ and $D = cl_X H \cap cl_X V \setminus W$ are disjoint closed subsets of the compact space $cl_X V$. Thus there is a continuous function $h: cl_X V \rightarrow [-1,1]$ such that $C \subseteq h^{-1}(1)$ and $D \subseteq h^{-1}(-1)$. Let $g: X \rightarrow [-1,1]$ be defined by $g(x) = -1$ if $x \in cl_X G \setminus W$, $g(x) = 1$ if $x \in cl_X H \setminus W$ and $g(x) = h(x)$ if $x \in cl_X V$. It is easy to see that g satisfies the required properties. Since $W \in k(X)$ and L is compact, then $g^e(G) \subseteq \{-1\}$, $g^e(H) \subseteq \{1\}$ and $G' \cup H' = X'$. So G' and H' are disjoint clopen subsets of X' whose union is X'. Now let U be any open subset of X. Suppose that $y \in U' \cap G' \setminus (U \cap G)'$ for some $y \in X'$. There is an open neighbourhood S of y in fX such that $S \cap (L \cup H' \cup (U \cap G)) = \emptyset$. Then $S \cap U \subseteq H$ and consequently $y \in (S \cap U)' \subseteq H'$, a contradiction. So $(U \cap G)' = U' \cap G'$.

(d) We must show that if $A, B \subseteq X$, then $cl_{fX} A \cap cl_{fX} B = \emptyset$ if and only if there is an f-pair (G, H) in X such that $cl_X A \subseteq G$ and $cl_X B \subseteq H$. “if” part is clear from (c). Thus suppose that $A, B \subseteq X$ and $cl_{fX} A \cap cl_{fX} B = \emptyset$. $\{F(g): g \in F(X)\} = \{Z(g^e): g \in F(X)\}$ is a basis for closed sets in fX and it is closed under finite intersections. Hence there exist $g, h \in F(X)$ such that $cl_{fX} A \subseteq F(g), cl_{fX} B \subseteq F(h)$ and $F(g) \cap F(h) = Z(g^e) \cap Z(h^e) = Z((g^2 + h^2)^e) = \emptyset$. This implies that $g^2 + h^2$ is a unit in $F(X)$. Let $w = g^2/(g^2 + h^2)$. Then $0 < w(x) < 1$ for all $x \in X$. Let $V \in k(X)$ be such that $w(X \setminus V) = \{a_1, \ldots, a_n\}$. Pick a real number $0 < \alpha < 1$ such that $\alpha \neq \alpha_i$ for $i = 1, \ldots, n$. Let $G = \{x \in X: w(x) < \alpha\}$ and $H = \{x \in X: w(x) > \alpha\}$. Then $cl_X A \subseteq G$, $cl_X B \subseteq H$, $G \cap H = \emptyset$ and $X \setminus (G \cup H) \subseteq (w^e)^{-1}(\alpha) \subseteq X$. Thus (G, H) is an f-pair with the required properties.
3. 2^J as a remainder. Let D be the discrete space $\{-1, 1\}$. Then 2^J is homeomorphic to D^J. In what follows, it will be more convenient to work with D than 2 and we will do so. We first state a lemma which follows easily from Theorem 2.2(c) by induction.

Lemma 3.1. Let $X \in LC$ and $(G_1, H_1), \ldots, (G_n, H_n)$ be a finite sequence of f-pairs in X. Then $(G_1 \cap \cdots \cap G_n)' = G_1' \cap \cdots \cap G_n'$, where for a subset A of X, $A' = \text{cl}_X A \setminus X$.

We now state our main result.

Theorem 3.2. Let $X \in LC$, m be an infinite cardinal and J be a set of cardinality m. Then the following are equivalent.

(a) X has a dyadic family of power m.

(b) The group of units of $R(X)$ has a subgroup G of cardinality m such that $g^2 = 1$ for all $g \in G$ and G is linearly independent over R.

(c) D^J is a remainder of X.

Proof. (a) implies (b). Let $\Delta = \{(U_j^{-1}, U_j^1) : j \in J\}$ be a dyadic family of power m in X. For each $j \in J$ we pick a function $g_j \in F(X)$ and a member V_j of $\kappa(X)$ such that for $i \in D \cap (x U_j \setminus V_j) \subseteq g_j^{-1}(i)$. The existence of g_j is guaranteed by 2.2(c). Let $r_j = g_j + I(X), j \in J$. Since

$$X \setminus Z_1 = L_j \cup \text{cl}_X V_j$$

where $L_j = X \setminus (U_j^{-1} \cup U_j^1)$, then $r_j^2 = 1$ for all $j \in J$. Let G be the group generated by $\{r_j : j \in J\}$. Then clearly $r^2 = 1$ for all $r \in G$. Let j_1, \ldots, j_n be distinct elements of J and H be the subgroup of G generated by $A = \{r_j : k = 1, \ldots, n\}$. Let T be the linear subspace of $R(X)$ spanned by H. Since $|A| \leq n$ and $r_j^2 = 1$ for all $j \in J$, then $|H| \leq 2^n$. It follows that $\dim_R T \leq 2^n$. For an n-tuple $\eta = (\eta_1, \ldots, \eta_n) \in D^n$ let $e_\eta \in F(X)$ be defined by

$$e_\eta = 2^{-n}(1 + \eta_1 g_{j_1}) \cdots (1 + \eta_n g_{j_n}).$$

Let $P_k = \text{cl}_X V_{j_k} \cup L_{j_k}, 1 \leq k \leq n$, and $P = P_1 \cup \cdots \cup P_n$. We claim that $e_\eta \notin I(X)$. For suppose that $e_\eta \in I(X)$ and $V = X \setminus Z(e_\eta)$. Then $P \cup \text{cl}_X V$ is compact. Thus if $Q = U_j^{\eta_j} \cap \cdots \cap U_{j_n}^{\eta_n}$, then $\hat{Q} = Q \cup P \cup \text{cl}_X V \neq \emptyset$ since Δ is a dyadic family. Let $x \in \hat{Q}$. Then for $1 \leq k \leq n$, $x \in U_{j_k}^{\eta_k} \setminus V_{j_k}$ which implies that $2^{-1}(1 + \eta_k g_{j_k}(x)) = 2^{-1}(1 + \eta_k^2) = 1$. Thus $0 = e(x) = 1$, a contradiction. Let $\hat{\eta} = e_\eta + I(X)$. Then $\hat{\eta}$ is a nonzero element of T. If η and ρ are distinct n-tuples in D^n, then it is easy to see that $\hat{\eta}^* \hat{\rho} = 0$ and $\hat{\eta}$ is an idempotent in T. Thus $\{\hat{\eta} : \eta \in D^n\}$ is a linearly independent subset of T containing exactly 2^n elements. This shows that $\dim_R T = 2^n$. Thus $|H| = 2^n$ and H is linearly independent over R. Since every finite subset B of G is also a subset of a subgroup H described as above, then B is linearly independent. Also the argument given above shows that $|\{r_j : j \in J\}| = m$. Thus $|G| = m$.

(b) implies (c). G is a 2-group and so it has a basis. This means that there is a subset B of G such that if b_1, \ldots, b_n are distinct elements of B, then $b_1 \cdots b_n \neq 1$ and each element of G can be written as a finite product of elements in B. Since $|G| = m$ and m is an infinite cardinal, then $|B| = m$. We define a function $\psi : \text{Max } R(X) \to D^B$ as follows: Let $P = \text{Max } R(X)$ and $M \in P$. If $b \in B$ then $b^2 - 1 \in M$. Thus either
b - 1 \in M \text{ or } b + 1 \in M. \text{ But } 2 \not\in M \text{ and so only one of } b - 1 \text{ or } b + 1 \text{ may be in } M. \text{ We define } \psi(M)(b) = -1 \text{ if } b + 1 \in M \text{ and } \psi(M)(b) = 1 \text{ if } b - 1 \in M. \text{ Let } \pi_b : D^B \rightarrow D \text{ denote the } b^{th} \text{ projection. If } b_1, \ldots, b_n \text{ are distinct elements of } B \text{ and } i_1, \ldots, i_n \in D, \text{ then } \psi^{-1}(\pi_{b_1}^{-1}(i_1) \cap \cdots \cap \pi_{b_n}^{-1}(i_n)) = P \setminus E((b_1 + i_1) \cdots (b_n + i_n)). \text{ Hence } \psi \text{ is continuous. Moreover } \psi \text{ is onto, for let } x \in D^B. \text{ The ideal } T \text{ of } R(X) \text{ generated by } \{b - x(b): b \in B\} \text{ is distinct from } R(X). \text{ For otherwise there are elements } r_1, \ldots, r_n \in R(X) \text{ and } b_1, \ldots, b_n \in B \text{ such that } b_i's \text{ are distinct and}
\begin{equation}
r_1(b_1 - x(b_1)) + \cdots + r_n(b_n - x(b_n)) = 1.
\end{equation}
\text{Let } r \text{ be the product of the elements } b_k + x(b_k), 1 \leq k \leq n. \text{ Then multiplying both sides of (i) by } r \text{ we obtain } r = 0. \text{ Since } B \text{ is a basis for } G, \text{ then } r \text{ is a linear combination of the pairwise distinct elements } 1, b_1, \ldots, b_n, b_1b_2, \ldots, b_1b_2 \cdots b_n \text{ of } G \text{ with } 1 \text{ having the coefficient } \mp 1. \text{ This is a contradiction as } G \text{ is linearly independent over } R. \text{ So } T \neq R(X). \text{ If } M \text{ is a maximal ideal containing } T, \text{ then } \psi(M) = x. \text{ So } \psi \text{ is onto. It follows that } D^B \text{ is a continuous image of } P \text{ and so of } f_X \times X \text{ by } 2.2(a). \text{ Now, utilizing upper semicontinuous decompositions as in } [M] \text{ we can construct a compactification } aX \text{ of } X \text{ with } aX \times X = D^B.

(c) implies (a). \text{ Let } aX \text{ be a compactification of } X \text{ such that } aX \times X = D^J. \text{ Then } fX \supseteq aX \text{ since } D^J \text{ is zero dimensional. Let } \phi : fX \times X \rightarrow D^J \text{ be a continuous surjection. For } j \in J \text{ and } i \in D, \text{ let us set } W_j^i = \phi^{-1}(\pi_j^{-1}(i)). \text{ Then } W_j^{-1} \text{ and } W_j^1 \text{ are disjoint clopen sets in } X' \text{ whose union is } X'. \text{ Let } V_j^{-1} \text{ and } V_j^1 \text{ be disjoint open neighbourhoods of } W_j^{-1} \text{ and } W_j^1, \text{ respectively, in } fX. \text{ Let } U_j^i = X \cap V_j^i \text{ for } i \in D \text{ and } j \in J. \text{ If } T = V_j^{-1} \cup V_j^1, \text{ then } (X \setminus T \cap X) \cap T = \emptyset \text{ and } T \text{ is an open neighbourhood of } X'. \text{ Thus } cl_{fX}(X \times X \cap T) \subseteq X, \text{ i.e., } X \times X \cap T \text{ is compact. So } (U_j^{-1}, U_j^1) \text{ is an } f\text{-pair in } X \text{ for each } j \in J. \text{ Let } \Delta \text{ be the set of all these pairs. If } j_1, \ldots, j_k \text{ are distinct elements of } J \text{ and } i_1, \ldots, i_n \in D, \text{ then by Lemma 3.1, } (\cap U_j^{i_k})' = \cap (U_j^{i_k})' = \cap W_j^{i_k} = \phi^{-1}(\cap \pi_j^{-1}(i_k)) \neq \emptyset \text{ where the intersections are taken over } k, 1 \leq k \leq n. \text{ Thus } \Delta \text{ is a dyadic family of power } m \text{ in } X.

REFERENCES

TEMEL BİLMİLER FAKÜLTESİ, MATEMATİK BÖLÜMÜ, ÇUKUROVA ÜNIVERSITESİ, P.K. 171, ADANA, TURKEY