Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On productive classes of function rings


Author: Paul Bankston
Journal: Proc. Amer. Math. Soc. 87 (1983), 11-14
MSC: Primary 03C20; Secondary 08C05, 18B99, 54C40
DOI: https://doi.org/10.1090/S0002-9939-1983-0677220-4
MathSciNet review: 677220
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: No nontrivial $ P$-class ("$ P$" for "productive") of rings of continuous real-valued functions can be category equivalent to any elementary $ P$-class of finitary universal algebras.


References [Enhancements On Off] (What's this?)

  • [1] B. Banaschewski, On categories of algebras equivalent to a variety, Algebra Universalis (to appear). MR 692271 (84g:08025)
  • [2] P. Bankston, Reduced coproducts in the category of compact Hausdorff spaces (to appear).
  • [3] -, Some obstacles to duality in topological algebra, Canad. J. Math. 34 (1982), 80-90. MR 650854 (83i:18012)
  • [4] P. Bankston and R. Fox, On categories of algebras equivalent to a quasivariety, Algebra Universalis (to appear). MR 692254 (84g:08026)
  • [5 C] C. Chang and H. J. Keisler, Model theory, North-Holland, Amsterdam, 1973.
  • [6] L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, Princeton, N. J., 1960. MR 0116199 (22:6994)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 03C20, 08C05, 18B99, 54C40

Retrieve articles in all journals with MSC: 03C20, 08C05, 18B99, 54C40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1983-0677220-4
Keywords: $ P$-classes, elementary classes, rings of continuous functions
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society