Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Finite jumps in Milnor number imply vanishing folds


Author: Donal B. O’Shea
Journal: Proc. Amer. Math. Soc. 87 (1983), 15-18
MSC: Primary 14B07; Secondary 32B30, 32G11
DOI: https://doi.org/10.1090/S0002-9939-1983-0677221-6
MathSciNet review: 677221
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \left\{ {{X_t}} \right\}$ be a family of isolated hypersurface singularities in which the Milnor number is not constant. It is proved that there must be a vanishing fold centered at any $ t = {t_0}$ at which the Milnor number of the $ {X_t}$ changes discontinuously. This is much stronger than the condition that the Whitney conditions fail.


References [Enhancements On Off] (What's this?)

  • [1] J. Briançon and J. P. Speder, La trivialité topologique $ n$ 'implique pas les conditions de Whitney, C. R. Acad. Sci. Paris Sér. A-B 280 (1975), 365-367. MR 0425165 (54:13122)
  • [2] -, Les conditions de Whitney impliquent " $ {\mu ^ * }$ constant", Ann. Inst. Fourier (Grenoble) 26 (1976), 153-163. MR 0419825 (54:7843)
  • [3] F. Bruhat and H. Cartan, Sur la structure des sous-ensembles analytiques réels, C. R. Acad. Sci. Paris Sér. A-B 244 (1957), 988-990. MR 0086108 (19:125f)
  • [4] C. Ehresmann, Sur les éspaces fibrés differentiables, C. R. Acad. Sci. Paris Sér. A-B 224 (1947), 1611-1612. MR 0020774 (8:595b)
  • [5] Lê Dũng Tráng and C. P. Ramanujam, The invariance of Milnor's number implies the invariance of the topological type, Amer. J. Math. 98 (1976), 67-78. MR 0399088 (53:2939)
  • [6] J. Milnor, Singular points of complex hypersurfaces, Ann. of Math. Studies, no. 61, Princeton Univ. Press, Princeton, N. J., 1968. MR 0239612 (39:969)
  • [7] -, Morse theory, Ann. of Math. Studies, no. 51, Princeton Univ. Press, Princeton, N. J., 1969.
  • [8] D. O'Shea, Vanishing folds in $ \mu $-constant families, Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc., Providence, R. I. (to appear).
  • [9] B. Teissier, Cycles évanescents, sections planes et conditions de Whitney, Singularités à Cargese, Astérisque 7-8 (1973). MR 0374482 (51:10682)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 14B07, 32B30, 32G11

Retrieve articles in all journals with MSC: 14B07, 32B30, 32G11


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1983-0677221-6
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society