Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Minimal splitting fields in cyclotomic extensions


Authors: Eugene Spiegel and Allan Trojan
Journal: Proc. Amer. Math. Soc. 87 (1983), 33-37
MSC: Primary 20C05; Secondary 12A55
DOI: https://doi.org/10.1090/S0002-9939-1983-0677225-3
MathSciNet review: 677225
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Suppose $ G$ is a finite group of exponent $ n$ and $ X$ an irreducible character of $ G$. In this note we give sufficient conditions for the existence of a minimal degree splitting field $ L$ with $ Q(X) \subseteq L \subseteq Q({\zeta _n})$.


References [Enhancements On Off] (What's this?)

  • [1] M. Benard and M. Schacher, The Schur subgroup. II, J. Algebra 22 (1972), 378-385. MR 0302747 (46:1890)
  • [2] G. Cornell, Abhyankar's lemma and the class group (Proc. Illinois Number Theory Conf.), Lecture Notes in Math., vol. 751, Springer-Verlag, Berlin and New York, 1979, pp. 82-88. MR 564924 (82c:12007)
  • [3] B. Fein, Minimal splitting fields for group representations, Pacific J. Math. 51 (1974), 427-431. MR 0364420 (51:674)
  • [4] -, Minimal splitting fields for group representations. II, Pacific J. Math. 77 (1978), 445-449. MR 510933 (80c:20009)
  • [5] -, Schur indices and sums of squares, Proc. Amer. Math. Soc. 51 (1975), 31-34. MR 0374249 (51:10449)
  • [6] C. Ford, Groups which determine the Schur index of a representation, J. Algebra 57 (1979), 339-354. MR 533802 (80i:20003)
  • [7] D. Goldschmidt and I. Isaacs, Schur indices in finite groups, J. Algebra 33 (1975), 191-199. MR 0357570 (50:10038)
  • [8] H. Hasse, Number theory, Springer-Verlag, Berlin and New York, 1980. MR 562104 (81c:12001b)
  • [9] R. Mollin, Splitting fields and group characters, J. Reine Angew. Math. 315 (1980), 107-114. MR 564527 (81b:12011)
  • [10] E. Spiegel and A. Trojan, On semi-simple group algebras. II, Pacific J. Math. 66 (1976), 553-559. MR 0447385 (56:5697)
  • [11] T. Yamada, The Schur subgroup of the Brauer group, Lecture Notes in Math., vol. 397, Springer-Verlag, Berlin and New York, 1974. MR 0347957 (50:456)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20C05, 12A55

Retrieve articles in all journals with MSC: 20C05, 12A55


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1983-0677225-3
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society