Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

A converse to the Lusin-Privalov radial uniqueness theorem


Author: Robert D. Berman
Journal: Proc. Amer. Math. Soc. 87 (1983), 103-106
MSC: Primary 30D40
MathSciNet review: 677242
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ E$ be a subset of the unit circumference $ C$. If for every nonempty open arc $ A$ of $ C$, the set $ E$ is not both metrically dense and of second category in $ A$, then there exists a nonconstant analytic function $ f$ on the open unit disk $ \Delta $, such that $ {f^ * }(\eta ) = 0$, $ \eta \in E$, where $ {f^ * }$ is the radial limit function of $ f$.


References [Enhancements On Off] (What's this?)

  • [1] F. Bagemihl and W. Seidel, Some boundary properties of analytic functions, Math. Z. 61 (1954), 186–199. MR 0065643 (16,460d)
  • [2] P. Fatou, Séries trigonométriques et séries de Taylor, Acta Math. 30 (1906), no. 1, 335–400 (French). MR 1555035, http://dx.doi.org/10.1007/BF02418579
  • [3] N. Lusin and J. Priwaloff, Sur l’unicité et la multiplicité des fonctions analytiques, Ann. Sci. École Norm. Sup. (3) 42 (1925), 143–191 (French). MR 1509265
  • [4] S. N. Mergelyan, Amer. Math. Soc. Transl. 3 (1962), 287-293.
  • [5] I. I. Priwalow, Randeigenschaften analytischer Funktionen, Zweite, unter Redaktion von A. I. Markuschewitsch überarbeitete und ergänzte Auflage. Hochschulbücher für Mathematik, Bd. 25, VEB Deutscher Verlag der Wissenschaften, Berlin, 1956 (German). MR 0083565 (18,727f)
  • [6] F. Riesz and M. Riesz, Über die Randwerte einer analytischen Funktion, Quatrième Congrès des Math. Scand. Stockholm, 1916, pp. 27-44.
  • [7] Walter J. Schneider, Approximation and harmonic measure, Aspects of contemporary complex analysis (Proc. NATO Adv. Study Inst., Univ. Durham, Durham, 1979) Academic Press, London-New York, 1980, pp. 333–349. MR 623476 (82g:30058)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30D40

Retrieve articles in all journals with MSC: 30D40


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1983-0677242-3
PII: S 0002-9939(1983)0677242-3
Keywords: Lusin-Privalov, radial uniqueness
Article copyright: © Copyright 1983 American Mathematical Society