SHORTER NOTES

The purpose of this department is to publish very short papers of unusually elegant and polished character, for which there is no other outlet.

FOR ANY \(X \),
THE PRODUCT \(X \times Y \) IS HOMOGENEOUS FOR SOME \(Y \)

VLADIMIR V. USPENSKIÍ

Abstract. We prove that for every topological space \(X \) there exists a cardinal \(k \) and a nonempty subspace \(Y \subseteq X^k \) such that the product \(X \times Y \) is homogeneous. This answers a question of A. V. Arhangel'skií.

A topological space in which every point can be mapped to every other point by a homeomorphism of the space onto itself is called homogeneous. Answering a question of A. V. Arhangel'skií [A], Jan van Mill [VM] has constructed an example of a rigid (= no autohomeomorphisms beyond the identity) compact space \(X \) such that \(X \times X \) is homogeneous. It is not known whether for every compact space \(X \) there exists a nonempty compact space \(Y \) such that \(X \times Y \) is homogeneous (cf. [DV, Question 6.3]). We show if the requirement of compactness is omitted, such a \(Y \) always does exist.

Theorem. For every nonempty topological space \(X \) there exists a nonempty topological space \(Y \) such that \(X \times Y \) and \(Y \) are homeomorphic and homogeneous.

Proof. Let \(A \) be an infinite set of cardinality \(|A| \geq |X| \). In the cube \(X^A \), consisting of all functions \(f: A \to X \), consider the subspace \(Y = \{ f \in X^A : |f^{-1}(x)| = k \text{ for every } x \in X \} \). Clearly \(X \times Y \) and \(Y \) are homeomorphic. Let \(g \in Y \) and \(h \in Y \). Since \(|g^{-1}(x)| = |h^{-1}(x)| \) for each \(x \in X \), there exists a permutation \(p \) of the set \(A \) such that \(p(h^{-1}(x)) = g^{-1}(x) \) for each \(x \in X \), which means \(h = g \circ p \). The mapping \(f \mapsto f \circ p \) \((f \in Y) \) is an autohomeomorphism of \(Y \) which maps \(g \) to \(h \). Hence \(Y \) is homogeneous, and so is \(X \times Y \).

Received by the editors June 21, 1982.
1980 Mathematics Subject Classification. Primary 54B10.

©1983 American Mathematical Society
0002-9939/82/0000-0693/$01.25

REFERENCES

DEPARTMENT OF TOPOLOGY, FACULTY OF MECHANICS AND MATHEMATICS, MOSCOW STATE UNIVERSITY, MOSCOW 234, 117234, USSR