Pseudo-algebraically closed fields over rational function fields

Authors:
Moshe Jarden and Saharon Shelah

Journal:
Proc. Amer. Math. Soc. **87** (1983), 223-228

MSC:
Primary 12F20; Secondary 12F99

MathSciNet review:
681825

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The following theorem is proved: Let be an uncountable set of algebraically independent elements over a field . Then is a Hilbertian field but the set of for which is PAC is nonmeasurable.

**[1]**James Ax,*The elementary theory of finite fields*, Ann. of Math. (2)**88**(1968), 239–271. MR**0229613****[2]**-,*A mathematical approach to some problems in number theory*, 1969 Number Theory Institute, Proc. Sympos. Pure Math., vol. 20, Amer. Math. Soc., Providence, R.I., 1971, pp. 161-190.**[3]**Gerhard Frey,*Pseudo algebraically closed fields with non-Archimedean real valuations*, J. Algebra**26**(1973), 202–207. MR**0325584****[4]**Michael Fried, Dan Haran, and Moshe Jarden,*Galois stratification over Frobenius fields*, Adv. in Math.**51**(1984), no. 1, 1–35. MR**728998**, 10.1016/0001-8708(84)90002-1**[5]**Eizi Inaba,*Über den Hilbertschen Irreduzibilitätssatz*, Jap. J. Math.**19**(1944), 1–25 (German). MR**0016749****[6]**Moshe Jarden,*Elementary statements over large algebraic fields*, Trans. Amer. Math. Soc.**164**(1972), 67–91. MR**0302651**, 10.1090/S0002-9947-1972-0302651-9**[7]**Moshe Jarden,*The elementary theory of 𝜔-free Ax fields*, Invent. Math.**38**(1976/77), no. 2, 187–206. MR**0435051****[8]**Moshe Jarden,*An analogue of Čebotarev density theorem for fields of finite corank*, J. Math. Kyoto Univ.**20**(1980), no. 1, 141–147. MR**564673****[9]**Moshe Jarden and Ursel Kiehne,*The elementary theory of algebraic fields of finite corank*, Invent. Math.**30**(1975), no. 3, 275–294. MR**0435050**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
12F20,
12F99

Retrieve articles in all journals with MSC: 12F20, 12F99

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1983-0681825-4

Keywords:
PAC fields,
Hilbertian fields,
Haar measure

Article copyright:
© Copyright 1983
American Mathematical Society