Rough and strongly rough norms on Banach spaces

Author:
G. Godini

Journal:
Proc. Amer. Math. Soc. **87** (1983), 239-245

MSC:
Primary 46B20

MathSciNet review:
681828

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give equivalent conditions for a norm on a Banach space to be rough using the sets defined for each by . This enables us to obtain unitary characterizations for rough and strongly rough norms.

**[1]**R. Anantharaman, T. Lewis, and J. H. M. Whitfield,*Smoothability, strong smoothability and dentability in Banach spaces*, Canad. Math. Bull.**24**(1981), no. 1, 59–68. MR**611210**, 10.4153/CMB-1981-009-9**[2]**Béla Bollobás,*An extension to the theorem of Bishop and Phelps*, Bull. London Math. Soc.**2**(1970), 181–182. MR**0267380****[3]**Mahlon M. Day,*Strict convexity and smoothness of normed spaces*, Trans. Amer. Math. Soc.**78**(1955), 516–528. MR**0067351**, 10.1090/S0002-9947-1955-0067351-1**[4]**Nelson Dunford and Jacob T. Schwartz,*Linear operators. Part I*, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. General theory; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1958 original; A Wiley-Interscience Publication. MR**1009162****[5]**J. R. Giles, D. A. Gregory, and Brailey Sims,*Characterisation of normed linear spaces with Mazur’s intersection property*, Bull. Austral. Math. Soc.**18**(1978), no. 1, 105–123. MR**0493266****[6]**James Hagler and Francis Sullivan,*Smoothness and weak* sequential compactness*, Proc. Amer. Math. Soc.**78**(1980), no. 4, 497–503. MR**556620**, 10.1090/S0002-9939-1980-0556620-4**[7]**K. John and V. Zizler,*On rough norms on Banach spaces*, Comment. Math. Univ. Carolin.**19**(1978), no. 2, 335–349. MR**500126****[8]**J. Kurzweil,*On approximation in real Banach spaces*, Studia Math.**14**(1954), 214–231 (1955). MR**0068732****[9]**E. B. Leach and J. H. M. Whitfield,*Differentiable functions and rough norms on Banach spaces*, Proc. Amer. Math. Soc.**33**(1972), 120–126. MR**0293394**, 10.1090/S0002-9939-1972-0293394-4**[10]**R. R. Phelps,*A representation theorem for bounded convex sets*, Proc. Amer. Math. Soc.**11**(1960), 976–983. MR**0123172**, 10.1090/S0002-9939-1960-0123172-X**[11]**Francis Sullivan,*Dentability, smoothability and stronger properties in Banach spaces*, Indiana Univ. Math. J.**26**(1977), no. 3, 545–553. MR**0438088****[12]**S. L. Troyanski,*On locally uniformly convex and differentiable norms in certain non-separable Banach spaces*, Studia Math.**37**(1970/71), 173–180. MR**0306873****[13]**J. H. M. Whitfield,*Rough and strongly rough norms on Banach spaces*, Abstracta of the Seventh Winter School Praha, 1979.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
46B20

Retrieve articles in all journals with MSC: 46B20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1983-0681828-X

Article copyright:
© Copyright 1983
American Mathematical Society