NOTE ON RESTRICTION OF FOURIER TRANSFORMS

MEN-CHANG HU

Abstract. A technique for obtaining necessary conditions on restriction of Fourier transforms is introduced.

In [1], E. Prestini has proved that if \(\alpha \) is a compact \(C^3 \) curve in \(\mathbb{R}^3 \) with nonvanishing curvature and torsion, then the inequality

\[
\| \hat{f}_\alpha \|_{L^q(\alpha)} \leq C \| f \|_{L^p(\mathbb{R}^3)}, \quad f \in \mathcal{S},
\]

holds if \(1 < p < 15/13 \) and \(1/q > 6(1 - 1/p) \). The inequality does not hold if \(p \geq 6/5 \) or \(1/q < 6(1 - 1/p) \). In this note we shall elaborate an idea of Knapp to prove that the inequality does not hold if \(p > 7/6 \). Our argument, which can be applied in similar situations also, is presented in the following paragraph.

We assume \(\alpha \) is defined by the equation \((t, \phi(t), \psi(t))\), \(0 \leq t \leq \eta \), where \(\eta \) is a small positive number and \(\phi(t) = t^2 + \xi(t) \), \(\psi(t) = t^3 + \zeta(t) \), \(\xi(t) \) and \(\zeta(t) \) are infinitesimals of third and fourth order w.r.t. \(t \). Choose a large positive number \(M \).

For each positive integer \(k \), set \(\eta_k = 2^{-k} \eta \) and \(\delta_k = \eta_k/M \). For each \(j = 1, 2, \ldots, 2^k - 1 \), let \(Q_{k,j} \) be the parallelepiped centered at \(\alpha(j\eta_k) \) and whose dimensions are \(\delta_k \), \(\delta_k^2 \), \(\delta_k^3 \) along the tangent, normal and binormal at \(\alpha(j\eta_k) \), respectively. Note that for \(M \) sufficiently large, we may assume that, for each \(k \), the collection \(\{(1 + \sqrt{M})Q_{k,j} : 0 < j < 2^k\} \) are pairwise disjoint and there exists \(\theta > 0 \) such that, for each \(k \) and \(j \), \(\{\alpha(t) : |t - j\eta_k| < \theta \delta_k\} \subset Q_{k,j} \). Choose a smooth function \(g \) such that \(g(x) = 1 \) if \(x \) lies in \(Q \), the unit cube centered at the origin, and \(g(x) = 0 \) if \(x \) lies outside \((1 + \sqrt{M})Q \). Put \(g_k(x_1, x_2, x_3) = g(x_1/\delta_k, x_2/\delta_k^2, x_3/\delta_k^3) \). Performing a suitable rigid motion to \(g_k \), we obtain a function \(g_{k,j} \) such that \(g_{k,j}(x) = 1 \) if \(x \) lies in \(Q_{k,j} \) and \(g_{k,j}(x) = 0 \) if \(x \) lies outside \((1 + 1/M)Q_{k,j} \). Let \(\hat{g}_{k,j} = g_{k,j} \). Then

\[
\| f_{k,j} \|_{L^p(\mathbb{R}^3)} = \delta_k^{k(1-1/p)} \| \hat{g}_{k,j} \|_{L^p(\mathbb{R}^3)}.
\]

Since the functions \(f_{k,j} \), \(0 < j < 2^k \), are rapidly decreasing, there exists points \(w_{k,j} \), \(0 < j < 2^k \), such that

\[
\left\| \sum_j \tau_{w_{k,j}} f_{k,j} \right\|_{L^p(\mathbb{R}^3)}^p \leq 2 \sum_j \left\| \tau_{w_{k,j}} f_{k,j} \right\|_{L^p(\mathbb{R}^3)}^p.
\]

Note that, for \(|t - j\eta_k| < \theta \delta_k \) and \(0 < j < 2^k \),

\[
\left| \sum_j \tau_{w_{k,j}} f_{k,j}(\alpha(t)) \right| = 1.
\]
If the inequality (1) is true, we would have

\[\sum \int_{\eta_k+\theta\delta_k}^{\eta_k-\theta\delta_k} 1 \leq C \left(\sum \delta_k \right)^{a/p}. \]

Hence \(1 \leq C \cdot 2^k \cdot 2^{-6(p-1)k} \), for all positive integers \(k \). Clearly this can hold only if \(p \leq 7/6 \).

REMARK. The above idea is useful even if the curvature vanishes somewhere (see [2]).

REFERENCES

2. M. C. Hu, Restriction of Fourier transforms to plane curves (preprint).

Institute of Mathematics, Academia Sinica, Taipei, Taiwan, Republic of China