-behavior of power series with positive coefficients and Hardy spaces

Authors:
Miodrag Mateljević and Miroslav Pavlović

Journal:
Proc. Amer. Math. Soc. **87** (1983), 309-316

MSC:
Primary 30D55

DOI:
https://doi.org/10.1090/S0002-9939-1983-0681840-0

MathSciNet review:
681840

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For the power series with , certain weighted -norms of on are estimated from above and below in terms of the coefficients . Some consequences of this are obtained. For example, some known results concerning Hardy spaces may be extended to a wider class of spaces.

**[1]**R. Askey,*behaviour of power series with positive coefficients*, Proc. Amer. Math. Soc.**19**(1968), 303-305. MR**0223786 (36:6834)****[2]**R. Askey and R. P. Boas, Jr.,*Some integrability theorems for power series with positive coefficients*, Mathematical Essays dedicated to A. J. Macintyre, Ohio Univ. Press, Athens, 1970. MR**0277956 (43:3689)****[3]**P. L. Duren,*Theory of**spaces*, Academic Press, New York, 1970. MR**0268655 (42:3552)****[4]**G. H. Hardy and J. E. Littlewood,*Some properties of fractional integrals*. II, Math. Z.**34**(1931), 403-439. MR**1545260****[5]**-,*Elementary theorems concerning power series with positive coefficients and moment constants of positive functions*, J. Reine Angew. Math.**157**(1927), 141-158.**[6]**-,*Some new properties of Fourier constants*, Math. Ann.**97**(1926), 159-209.**[7]**W. K. Hayman,*Multivalent functions*, Cambridge Univ. Press, London and New York, 1958. MR**0108586 (21:7302)****[8]**F. Holland and J. B. Twomey,*On Hardy classes and the area function*, J. London Math. Soc.**17**(1978), 275-283. MR**0486532 (58:6255)****[9]**-,*Conditions for membership of Hardy spaces*, Aspects of Contemporary Complex Analysis (edited by D. A. Brannan and J. G. Clunie), Academic Press, New York, 1980, pp. 425-433. MR**623486 (82h:30035)****[10]**J. E. Littlewood and R. E. A. C. Paley,*Theorems on Fourier series and power series*. II, Proc. London Math. Soc.**42**(1936), 52-89.**[11]**M. Mateljević and M. Pavlović,*On the integral means of derivatives of the atomic function*(to appear).**[12]**J. W. Noonan and D. K. Thomas,*The integral means of regular functions*, J. London Math. Soc.**9**(1975), 557-560. MR**0364625 (51:879)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
30D55

Retrieve articles in all journals with MSC: 30D55

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1983-0681840-0

Keywords:
Hardy spaces,
Hardy-Stein identity

Article copyright:
© Copyright 1983
American Mathematical Society