A class of maximal ideals in the lattice of topologies

Authors:
W. J. Thron and R. A. Valent

Journal:
Proc. Amer. Math. Soc. **87** (1983), 330-334

MSC:
Primary 54A10; Secondary 06B10

MathSciNet review:
681843

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this article we investigate maximal ideals in the lattice of all topologies on a fixed set. Padmanabhan and Rao were the first to study maximal ideals in this lattice. They characterized the principal maximal ideals. Their main result was incorrect but their approach proved helpful to us. We exhibit a class of nonprincipal maximal ideals and also give an example to show that the class in question is not exhaustive.

**[1]**Otto Fröhlich,*Das Halbordnungssystem der topologischen Räume auf einer Menge*, Math. Ann.**156**(1964), 79–95 (German). MR**0166750****[2]**Edwin Hewitt,*A problem of set-theoretic topology*, Duke Math. J.**10**(1943), 309–333. MR**0008692****[3]**M. Katětov,*On topological spaces containing no disjoint dense sets*, Rec. Math. [Mat. Sbornik] N.S.**21(63)**(1947), 3–12 (Russian., with English summary). MR**0021679****[4]**Miroslav Katětov,*On nearly discrete spaces*, Časopis Pěst. Mat. Fys.**75**(1950), 69–78 (English, with Czech summary). MR**0036984****[5]**A. R. Padmanabhan and B. V. Rao,*Ideals in the lattice of topologies*, J. Indian Math. Soc. (N.S.)**33**(1969), 65–71. MR**0257951****[6]**A. R. Padmanabhan and B. V. Rao,*Corrections to the paper: “Ideals in the lattice of topologies” (J. Indian Math. Soc. (N.S.) 33 (1969), 65–71)*, J. Indian Math. Soc.**34**(1970), no. 3-4, 287 (1971). MR**0493928****[7]**W. J. Thron and R. A. Valent,*An embedding theorem for the lattice of 𝑇₁-topologies and some related cardinality results*, J. London Math. Soc. (2)**9**(1974/75), 418–422. MR**0388307**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
54A10,
06B10

Retrieve articles in all journals with MSC: 54A10, 06B10

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1983-0681843-6

Article copyright:
© Copyright 1983
American Mathematical Society