Rigid finite-dimensional compacta whose squares are manifolds

Authors:
Fredric D. Ancel and S. Singh

Journal:
Proc. Amer. Math. Soc. **87** (1983), 342-346

MSC:
Primary 54G20; Secondary 55M15, 57P99

MathSciNet review:
681845

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A space is *rigid* if its only self-homeomorphism is the identity. We answer questions of Jan van Mill by constructing for each , , a rigid -dimensional compactum whose square is homogeneous because it is a manifold. Moreover, for each , , we give uncountably many topologically distinct such examples. Infinite-dimensional examples are also given.

**[A]**A. V. Arhangel′skiĭ,*The structure and classification of topological spaces and cardinal invariants*, Uspekhi Mat. Nauk**33**(1978), no. 6(204), 29–84, 272 (Russian). MR**526012****[B]**Charles D. Bass,*Some products of topological spaces which are manifolds*, Proc. Amer. Math. Soc.**81**(1981), no. 4, 641–646. MR**601746**, 10.1090/S0002-9939-1981-0601746-0**[DS]**R. J. Daverman and S. Singh,*Arcs in the Hilbert cube (𝑆ⁿ) whose complements have different fundamental groups*, Compositio Math.**48**(1983), no. 2, 209–222. MR**700004****[K]**Michel A. Kervaire,*Smooth homology spheres and their fundamental groups*, Trans. Amer. Math. Soc.**144**(1969), 67–72. MR**0253347**, 10.1090/S0002-9947-1969-0253347-3**[L]**R. C. Lacher,*Cell-like mappings and their generalizations*, Bull. Amer. Math. Soc.**83**(1977), no. 4, 495–552. MR**0645403**, 10.1090/S0002-9904-1977-14321-8**[M]**William S. Massey,*Algebraic topology: An introduction*, Harcourt, Brace & World, Inc., New York, 1967. MR**0211390****[Ma]**Barry Mazur,*A note on some contractible 4-manifolds*, Ann. of Math. (2)**73**(1961), 221–228. MR**0125574****[S]**L. C. Siebenmann,*The obstruction to finding a boundary for an open manifold of dimension greater than five*, Ph.D. thesis, Princeton University, 1965.**[Sm]**Stephen Smale,*Generalized Poincaré’s conjecture in dimensions greater than four*, Ann. of Math. (2)**74**(1961), 391–406. MR**0137124****[T]**H. Toruńczyk,*On 𝐶𝐸-images of the Hilbert cube and characterization of 𝑄-manifolds*, Fund. Math.**106**(1980), no. 1, 31–40. MR**585543****[vM]**Jan van Mill,*A rigid space 𝑋 for which 𝑋×𝑋 is homogeneous; an application of infinite-dimensional topology*, Proc. Amer. Math. Soc.**83**(1981), no. 3, 597–600. MR**627701**, 10.1090/S0002-9939-1981-0627701-2**[W]**R. L. Wilder,*Monotone mappings of manifolds*, Pacific J. Math.**7**(1957), 1519–1528. MR**0092966****[Z]**E. C. Zeeman,*On the dunce hat*, Topology**2**(1964), 341–358. MR**0156351**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
54G20,
55M15,
57P99

Retrieve articles in all journals with MSC: 54G20, 55M15, 57P99

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1983-0681845-X

Keywords:
Generalized -manifold,
decomposition spaces,
homology spheres,
homogeneous,
cell-like decomposition

Article copyright:
© Copyright 1983
American Mathematical Society