Concerning exactly images of continua

Authors:
Sam B. Nadler and L. E. Ward

Journal:
Proc. Amer. Math. Soc. **87** (1983), 351-354

MSC:
Primary 54F20; Secondary 54F50

DOI:
https://doi.org/10.1090/S0002-9939-1983-0681847-3

MathSciNet review:
681847

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A surjective mapping is exactly if contains exactly points for each . We show that if is a continuum such that each nondegenerate subcontinuum of has an endpoint, and if , then there is no exactly mapping from any continuum onto . However, if is a continuum which contains a nonunicoherent subcontinuum, then such an mapping exists. Therefore, a Peano continuum is a dendrite if and only if for each there is no exactly mapping from any continuum onto . We also show that for each positive integer there is an exactly mapping from the Hilbert cube onto itself.

**[1]**Karol Borsuk and R. Molski,*On a class of continuous mappings*, Fund. Math.**45**(1957), 84–98. MR**0102063**, https://doi.org/10.4064/fm-45-1-84-98**[2]**T. A. Chapman,*Lectures on Hilbert cube manifolds*, American Mathematical Society, Providence, R. I., 1976. Expository lectures from the CBMS Regional Conference held at Guilford College, October 11-15, 1975; Regional Conference Series in Mathematics, No. 28. MR**0423357****[3]**Paul Civin,*Two-to-one mappings of manifolds*, Duke Math. J.**10**(1943), 49–57. MR**0008697****[4]**Paul W. Gilbert,*𝑛-to-one mappings of linear graphs*, Duke Math. J.**9**(1942), 475–486. MR**0007106****[5]**O. G. Harrold Jr.,*The non-existence of a certain type of continuous transformation*, Duke Math. J.**5**(1939), 789–793. MR**0001358****[6]**O. G. Harrold Jr.,*Exactly (𝑘,1) transformations on connected linear graphs*, Amer. J. Math.**62**(1940), 823–834. MR**0002554**, https://doi.org/10.2307/2371492**[7]**O. G. Harrold Jr.,*Continua of finite sections*, Duke Math. J.**8**(1941), 682–688. MR**0005336****[8]**Venable Martin and J. H. Roberts,*Two-to-one transformations on 2-manifolds*, Trans. Amer. Math. Soc.**49**(1941), 1–17. MR**0004129**, https://doi.org/10.1090/S0002-9947-1941-0004129-9**[9]**J. Mioduszewski,*On two-to-one continuous functions*, Rozprawy Mat.**24**(1961), 43. MR**0145490****[10]**J. H. Roberts,*Two-to-one transformations*, Duke Math. J.**6**(1940), 256–262. MR**0001923****[11]**Gordon Thomas Whyburn,*Analytic Topology*, American Mathematical Society Colloquium Publications, v. 28, American Mathematical Society, New York, 1942. MR**0007095**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
54F20,
54F50

Retrieve articles in all journals with MSC: 54F20, 54F50

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1983-0681847-3

Keywords:
Exactly mapping,
continuum,
dendrite,
Hilbert cube

Article copyright:
© Copyright 1983
American Mathematical Society