H*(MO(8); Z/2) IS AN EXTENDED A₂*-COALGEBRA

DAVID J. PENGELLEY

Abstract. We show that $H^*(MO(8); Z/2)$ is an extended A^*_2-coalgebra, where A^*_2 is the subalgebra of the Steenrod algebra generated by \{Sq^1, Sq^2, Sq^4\}. The method yields an analogous result for $H^*(M \text{Spin}; Z/2)$.

Recently Don Davis conjectured [D] that $H^*(MO(8); Z/2)$ is an extended A^*_2-coalgebra and discussed various consequences of such a result. We apply the method introduced in [P] to prove his conjecture.

Let $A^*_2 \subset A^*$ be the subalgebra generated by \{Sq^1, Sq^2, Sq^4\}.

Theorem A. $H^*MO(8)$ is an extended A^*_2-coalgebra, i.e., there is an A^*-coalgebra N such that $H^*MO(8) \cong A^* \otimes A^*_2 N$ as an A^*-coalgebra.

Corollary (Bahri and Mahowald [BM]). A^*/A^*_2 is a direct summand in $H^*MO(8)$.

Theorem B. $H^*M \text{Spin}$ is an extended A^*_1-coalgebra.

Proof of Theorem A. Let $p : BO(8) \to BO$ be the covering map. Recall [S] that $p^* : H^*BO \to H^*BO(8)$ is onto, and $H^*BO(8) = Z/2[p^*w_n; \alpha(n - 1) \geq 3]$, where \(\alpha(m)\) is the number of ones in the dyadic expansion of m. $H^*BO(8)$ is a sub-Hopf algebra of H^*_BO, and hence by Borel's theorem is also polynomial [B].

Let p_j be the coalgebra primitive in $H_{2\cdot -1} BO$ (and, via the Thom isomorphism, in $H_{2\cdot -1} MO$). From the inductive formula for Newton polynomials, p_j is indecomposable in H^*_MO. So we can consider the polynomial subalgebra

$$P_2 = Z/2[p^8, p^4, p^2, p_4, \ldots] \subset H^*_MO.$$

The map $QH^*BO \to QH^*BO(8)$ of indecomposable quotients is an isomorphism if $\alpha(n - 1) \geq 3$; and thus so is the map $PH^*_BO(8) \to PH^*_BO$ of coalgebra primitives. So the generators of P_2 lie in $H^*_MO(8)$, and thus all of P_2 does.

The coaction ψ on $P_2 \subset H^*_MO(8)$ is known [BP]: $\psi p_j = \Sigma_i \xi_i \otimes p^i$. Since $A_2 = (A^*_2)^* = A/(\xi_1, \xi_2, \xi_3, \xi_4, \ldots)$, the augmentation ideal P_2 is clearly a submodule of $H^*_MO(8)$ over A_2 (although not over A). Thus so is the ideal I generated by P_2 in $H^*_MO(8)$.

Received by the editors February 3, 1982.

1980 Mathematics Subject Classification. Primary 57R90; Secondary 55N22, 55R40, 55S10.

1Supported in part by a grant from the NSF.

©1983 American Mathematical Society

0002-9939/82/0000-0443/$01.50
Therefore by coassociativity we can form the diagram

\[
\begin{align*}
H_\ast MO(8) & \xrightarrow{\psi} A \otimes H_\ast MO(8) \xrightarrow{1 \otimes \pi} A \otimes H_\ast MO(8) / I \\
\vdash & \quad \\
\quad & \\
& \quad A \square_{A_3} H_\ast MO(8) / I
\end{align*}
\]

of A-algebras (the right three are here A-comodules using only the coproduct in the left factor A).

Since $H_\ast MO(8)$ has rank one if $m = 8, 12, 14$, and p_n is indecomposable in $H_\ast MO$, \{ $p_8^8, p_8^2, p_7^2, p_4, \ldots$ \} are polynomial generators for $H_\ast MO(8)$ in their degrees. Now $(1 \otimes \pi) \circ \psi$ maps p_1^8 to $\xi_1^8 \otimes 1$, p_2^4 to $\xi_2^4 \otimes 1$, p_3^2 to $\xi_3^2 \otimes 1$, and p_j to $\xi_j \otimes 1$ for $j \geq 4$, so $(1 \otimes \pi) \circ \psi$ is monic.

Finally, since A is a sum of A_3's as a right A_2 comodule,

\[
A \square_{A_3} H_\ast MO(8) / I \cong (A \square_{A_2} Z/2) \otimes H_\ast MO(8) / I
\]
as a graded vector space, and the latter in turn has the same graded rank as $H_\ast MO(8)$ since $A \square_{A_2} Z/2 = Z/2[\xi_1^8, \xi_2^4, \xi_3^2, \xi_4^2, \ldots]$. So ψ is an A-algebra isomorphism. \square

Proof of Corollary. $H_\ast MO(8) / I$ begins in dimension 16, but A_3^8 is generated by \{ Sq^1, Sq^2, Sq^4 \}, so $Z/2$ in dimension zero is a split A_2 summand of $H_\ast MO(8) / I$. \square

The theorem for M Spin has an identical proof, with $\alpha(n - 1) \geq 3$ replaced by $\alpha(n - 1) \geq 2$, and A_2 by A_1.

Don Davis has pointed out that since P_2 in $H_\ast BO$ is the image of $H_\ast \Omega^2 \Sigma^2 BO(8)$ under the Bahri-Mahowald map [BM], it follows that the A_2^8-coalgebra structure on N is the restriction of an unstable A^*-coalgebra action, and thus $H^*(MO(8); Z/2)$ is isomorphic to $A^*/A_2^8 \otimes N$ with diagonal A^* action.

References

[S] R. E. Stong, Determination of $H^\ast (BO(k, \ldots, \infty); Z_2)$ and $H^\ast (BU(k, \ldots, \infty); Z_2)$, Trans. Amer. Math. Soc. 107 (1963), 526–544.

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Current address: Department of Mathematical Sciences, New Mexico State University, Las Cruces, New Mexico 88003