ON A CERTAIN CLASS OF M_1-SPACES

T. MIZOKAMI

Abstract. Let \mathcal{M} be the class of all M_1-spaces whose every closed subset has a closure-preserving open neighborhood base. A characterization is given, and it is proved that the adjunction space $X \cup_f Y$ is an M_1-space if $X \in \mathcal{M}$ and Y is an M_1-space. Moreover, it is proved that if X is a space such that for each metrizable space Y, every closed subspace of $X \times Y$ is an M_1-space, then $X \in \mathcal{M}$.

1. Introduction. Let (P_i), $i = 1, 2, 3, 4$, be the following statements concerning M_1-spaces [3] and stratifiable spaces [1]:

(P_1) Every stratifiable space is an M_1-space.

(P_2) Each closed subspace of an M_1-space is also an M_1-space.

(P_3) Each adjunction space of M_1-spaces is also an M_1-space.

(P_4) Each closed subset of an M_1-space has a σ-closure-preserving open neighborhood base.

The problems whether the (P_i) are true or not are still open. The problems of (P_1), (P_2) and (P_3) are posed by Ceder [3]. On the other hand, the problem of (P_4) is posed by Borges and Lutzer in [2], where they characterized stratifiable spaces (which coincide with M_2-spaces by [4 and 8]) as paracompact σ-spaces such that each closed subset has a σ-closure-preserving neighborhood base which consists of not necessarily open neighborhoods. By Borges [1] and by the recent result of Heath and Junnila [6], it follows that (P_1) \Rightarrow (P_2) \Rightarrow (P_3) \Rightarrow (P_4). As is well known by Ceder [3, Lemma 7.3], every closed subset of an M_2-space has a closure-preserving neighborhood base. Corresponding to this, let $(P_4)'$ be the statement as follows:

$(P_4)'$ Every closed subset of an M_1-space has a closure-preserving open neighborhood base.

Obviously $(P_4)' \Rightarrow (P_4)$. The author in this paper studies the class \mathcal{M} of M_1-spaces satisfying $(P_4)'$ and proves that if (P_2) is assumed to be true, then $(P_4)'$ holds.

In this paper, all spaces are assumed to be regular and Hausdorff and all mappings to be continuous and onto unless the contrary is stated explicitly. N always denotes the positive integers. To state the results and the proofs, we give the definitions to the terminology used below. A mapping $f : X \to Y$ is said to be irreducible if no closed proper subspace of X is mapped onto Y by f. A space X is said to be monotonically normal [7] if the following is satisfied: To each pair (H, K)
of separated subsets of X one can assign an open set $D(H, K)$ in such a way that

(i) $H \subset D(H, K) \subset D(H, K) \subset X - K$, and

(ii) if (H', K') is a pair of separated sets having $H \subset H'$ and $K' \subset K$, then $D(H, K) \subset D(H', K')$.

According to [7], every stratifiable space is monotonically normal, and this fact is used below.

2. The class \mathcal{P}.

Definition 1. Let \mathcal{P} be the class of all M_1-spaces satisfying $(P_4)'$.

Most common examples of M_1-spaces seem to belong to \mathcal{P}. For example: (1) stratifiable F_σ-metrizable spaces due to Gruenhage [5], (2) M_1-spaces with dim ≤ 0 and (3) the closed image of an M_0-space (a space which has a σ-closure-preserving base consisting of closed and open sets) belong to \mathcal{P}. The proofs are given below implicitly. Every Lašnev space, and more generally every L-space of Nagami [9], belongs to \mathcal{P}, but the converse is not true as shown by [9, Examples 2.1, 2.2].

Lemma 1. Let M be a closed subspace of a stratifiable space X. Then to each open set U of M, we can assign an open set U' of X such that $U' \cap M = U$ and the following is satisfied:

\ast $U' \cap V' = \emptyset$ whenever U, V are disjoint open sets of M.

Proof. Let $\mathcal{F}_n = \bigcup \{ F^n_n : n \in \mathbb{N} \}$ be a σ-locally finite closed network of M such that each F^n_n is locally finite and $F^n_n \subset F^{n+1}_n$. For each open set W of M and each $n \in \mathbb{N}$, set

$$
F^n_n(W) = \{ F \in F^n_n : F \subset W \}, \quad F^n_n(W)^c = \bigcup \{ F : F \in F^n_n(W) \}.
$$

We shall construct U' for an arbitrary open set U of M by

$$
U_n = D\left(F^n_n(U)^c, M - U\right) - D\left(F^n_n(M - U)^c, U\right), \quad n \in \mathbb{N},
$$

$$
U' = \bigcup \{ U_n : n \in \mathbb{N} \}.
$$

Obviously $U' \cap M = U$. To see (\ast) for disjoint open sets U, V of M, assume that $V \cap U_n \neq \emptyset, m, n \in \mathbb{N}$. Without loss of generality, we can assume $n \geq m$. Observe

$$
D\left(F^m_m(V)^c, M - V\right) \subset D\left(F^n_n(M - U)^c, U\right).
$$

This contradicts the fact $V \cap U_n \neq \emptyset$.

In the above proof, if we use only the fact that X is monotonically normal, we obtain the following:

Corollary. Let M be a closed subspace of a monotonically normal space X and let $\{ U_{\alpha} : \alpha \in A \}$ be an open family of M. Then there exists an open family $\{ U'_{\alpha} : \alpha \in A \}$ of X such that $U_{\alpha} \cap M = U'_{\alpha}$ for each $\alpha \in A$ and for each $B \subset A$

$$
\bigcup \{ U_{\alpha} : \alpha \in B \} = \bigcup \{ U'_{\alpha} : \alpha \in B \} \cap M.
$$

In fact, if we define

$$
U_{\alpha} = \bigcup \{ D\{x\}, M - U_{\alpha} : x \in U_{\alpha} \}, \quad \alpha \in A,
$$

then $\{ U'_{\alpha} : \alpha \in A \}$ satisfied the required property.
Definition 2. (Nagata [10, Definition 2]). A space \(X \) is said to have the property (ECP) when the following is satisfied: If \(X' = X \cup F \), where \(X, F \) are closed in \(X' \), and if \(\mathcal{U} = \{ U_\alpha : \alpha \in A \} \) is a closure-preserving open collection in the subspace \(F \), then for each \(\alpha \in A \) there is a family \(\{ U_\beta : \beta \in B_\alpha \} \) of open sets of \(X' \) satisfying \(\mathcal{U}' = \{ U_\beta' : \beta \in \bigcup \{ B_\alpha : \alpha \in A \} \} \) is closure-preserving in \(X' \), (2) for each \(\beta \in B_\alpha \), \(U_\beta \cap F = U_\alpha \) and for every open set \(V \) in \(X' \) with \(V \cap F = U_\alpha \), there is \(\beta \in B_\alpha \) such that \(U_\beta \subset U_\beta' \subset V \), (3) for every open set \(W \) of \(F \), there is an open set \(W' \) of \(X' \) such that \(W' \cap F = W \) and such that \(W' \cap U_\beta' = \emptyset \) whenever \(\beta \in B_\alpha \) and \(W \cap U_\alpha = \emptyset \).

Theorem 1. The following are equivalent for a stratifiable space \(X \):

(1) \(X \in \mathcal{P} \).

(2) For each closed subspace \(M \) of \(X \), there exists an open family \(\mathcal{U} \) of \(X \) such that \(\mathcal{U} \) is closure-preserving in \(X - M \) and for each open set \(V \) of \(X \) there exists \(U \in \mathcal{U} \) such that \(U \subset V \) and \(U \cap M = V \cap M \).

(3) \(X \) has (ECP).

Proof. (3) \(\rightarrow \) (1) is trivial.

(1) \(\rightarrow \) (2): Let \(\{ G_n : n \in \mathbb{N} \} \) be a sequence of open sets of \(X \) such that \(M = \bigcap \{ G_n : n \in \mathbb{N} \} \), \(G_{n+1} \subset G_n \), \(n \in \mathbb{N} \). Let \(\mathcal{G} = \bigcup \{ \mathcal{G}_n : n \in \mathbb{N} \} \) be a closed network for \(M \) such that each \(\mathcal{G}_n \) is discrete. For each \(n \in \mathbb{N} \), let \(\{ G_F : F \in \mathcal{G}_n \} \) be an open discrete family of \(X \) such that \(F \subset G_F \) for each \(F \in \mathcal{G}_n \) and \(\bigcup \{ G_F : F \in \mathcal{G}_n \} \subset G_n \). Let \(\mathcal{U}_n \) be a closure-preserving open neighborhood base for \(\bigcup \{ F : F \in \mathcal{G}_n \} \). Set \(\mathcal{U}_n' = \{ U \cap G_F : F \in \mathcal{G}_n, U \in \mathcal{U}_n, \bar{U} \subset \bigcup \{ G_F : F \in \mathcal{G}_n \} \} \).

Note that \(\mathcal{U}_n' \) is closure-preserving in \(X \). For the family \(\mathcal{U} \), take the collection consisting of all unions of the sets from \(\bigcup \{ \mathcal{U}_n' : n \in \mathbb{N} \} \). Then it is easily shown that \(\mathcal{U} \) has the desired property.

(2) \(\rightarrow \) (3). Let \(X' = X \cup F \), where \(F, X \) are closed in \(X' \). Suppose \(\mathcal{U} = \{ U_\alpha : \alpha \in A \} \) is a closure-preserving open family of the subspace \(F \). By (2) there exists an open family \(\mathcal{V} \) of \(X \) such that \(\mathcal{V} \) is closure-preserving in \(X - F \) and for each open set \(W \) of \(X \) there exists \(V \in \mathcal{V} \) such that \(V \subset W \) and \(V \cap (F \cap X) = W \cap (F \cap X) \).

For each \(\alpha \in A \), we construct \(\mathcal{V}_\alpha \) as follows:

\[
\mathcal{V}_\alpha = \left\{ V \in \mathcal{V} : V \cap (F \cap X) = U_\alpha \cap (F \cap X), V \subset (U_\alpha \cap F \cap X)' \right\},
\]

where \((U_\alpha \cap F \cap X)' \) is the special extension of \(U_\alpha \cap F \cap X \) to \(X \) assured by Lemma 1. Write \(\mathcal{V}_\alpha = \{ V_\beta : \beta \in B_\alpha \}, \alpha \in A \). Set for each \(\alpha \in A \), \(U_\alpha' = V_\beta \cup U_\alpha, \beta \in B_\alpha \). Then it is easily seen that \(\{ U_\beta' : \beta \in B_\alpha, \alpha \in A \} \) satisfies the required conditions. This completes the proof.

Corollary 1. Let \(X \in \mathcal{P} \) and let \(M \) be a closed subspace of \(X \). If \(\mathcal{U} \) is a closure-preserving open family of \(M \), then there exists a closure-preserving family \(\mathcal{U}' \) of open sets of \(X \) such that for every open subset \(V \) of \(X \) with \(V \cap M \in \mathcal{U} \), there exists \(U' \in \mathcal{U}' \) such that \(U' \subset V \) and \(U' \cap M = V \cap M \).

The following is easily obtained by a repetition of the proof of [10, Theorem 1]:

Corollary 2. Let \(\{ X_i : i \in \mathbb{N} \} \) be a closed cover of a space \(X \). If each \(X_i \in \mathcal{P} \) and \(\{ X_i \} \) dominates \(X \), then \(X \in \mathcal{P} \).
The following Corollary 3 and Theorem 2 are obtained by modifying the proof [10, Lemma 2]. We give the proof only to Theorem 2, and that of Corollary 3 is similar.

Corollary 3. The adjunction space of $X, Y \in \mathcal{P}$ belongs to \mathcal{P}.

Theorem 2. Let $X \in \mathcal{P}$ and let Y be an M_1-space. Then the adjunction space $Z = X \cup Y$ is an M_1-space.

Proof. Let f be a mapping of a closed subset H of X into Y. Let $p: X \vee Y \to Z$ be the quotient mapping. Let $\mathfrak{U} = \bigcup \{\mathfrak{B}_n: n \in \mathbb{N}\}$ be a σ-closure-preserving base for $p(Y)$, where each $\mathfrak{B}_n = \{U_\alpha: \alpha \in A_n\}$ is closure-preserving in $p(Y)$. By (2) of Theorem 1, there exists an open family \mathcal{V} of X such that V is closure-preserving in $X - H$ and for each open set U of X there exists $V \in \mathcal{V}$ such that $V \subseteq U$ and $V \cap H = U \cap H$. Let $n \in \mathbb{N}$ be fixed for a while. Set

$$\mathcal{V}(\alpha) = \{V \in \mathcal{V}: V \cap H = p^{-1}_X(U_\alpha), V \subseteq (p^{-1}_X(U_\alpha))^\prime\}, \quad \alpha \in A_n,$$

$$\mathfrak{U}(\alpha) = \{p(V) \cup U_\alpha: V \in \mathcal{V}(\alpha)\}, \quad \alpha \in A_n,$$

where $p_X = p|X$ and $(p^{-1}_X(U_\alpha))^\prime$ is the special extension of $p^{-1}_X(U_\alpha)$ to X assured by Lemma 1. Set $\mathcal{W} = \bigcup \{\mathfrak{U}(\alpha): \alpha \in A_n, n \in \mathbb{N}\}$. Then it is easily seen that \mathcal{W} is a σ-closure-preserving open family of Z, which forms a local base of each point of $p(Y)$ in Z. Since there exists a σ-closure-preserving open family of Z which forms a local base of each point of $Z - p(Y)$ in Z, Z is shown to be an M_1-space.

Lemma 2. Let $Z = X \cup Y$ be a stratifiable space, where $X \cap Y = \emptyset$, X is closed in Z and Y is σ-discrete. If $X \in \mathcal{P}$, then $Z \in \mathcal{P}$.

Proof. The proof is due to Gruenhage [5, Lemma 6.5]. Let $Y = \bigcup \{F_n: n \in \mathbb{N}\}$, where each F_n is closed discrete in Y and $F_m \cap F_n = \emptyset$ if $m \neq n$. For each $x \in Y$ let $n(x)$ be the integer such that $x \in F_{n(x)}$. Let H be an arbitrary closed subset of Z. Since $X \in \mathcal{P}$, $X \cap H$ has a closure-preserving open neighborhood base \mathfrak{U}. Take $U \in \mathfrak{U}$. Since $Y \cup U$ is stratifiable, the closed subset $H \cup U$ has a closure-preserving neighborhood base \mathfrak{B} in $Y \cup U$, which consists of closed neighborhoods in $Y \cup U$. Inductively, define, for each $x \in Y$, an open neighborhood $U(x)$ of x in Y such that

(i) $\{U(x): x \in F_n\}$ is a discrete, closed and open family of Y,

(ii) $U(x) \subseteq D(\{x\}, \bigcup \{F_i: i < n(x)\} \cup \bigcup \{B \in \mathfrak{B}: x \notin B\}.)$

$$\cap \cap \{U(y): x \in U(y), n(y) < n(x)\}.$$

Then $\{U(x): x \in Y\}$ has the following properties:

(1) $y \in U(x)$ implies $U(y) \subseteq U(x)$,

(2) if H is closed in Y, then $\bigcup \{U(y): y \in H\}$ is closed and open in Y, and

(3) $x \notin B \in \mathfrak{B}$ implies $U(x) \cap B = \emptyset$.

For every open set V of Z satisfying $V \cap X = U$ and $H \subseteq V \subseteq U'$, where U' is the special extension of an open set $H \cup U$ in the subspace $H \cup X$ to Z, define $W(V) = V - \bigcup \{U(x): x \in Y - V\}$. Set $\mathfrak{W}(U) = \{W(V): U$ are the above open
sets), \(\mathcal{W} = \bigcup \{ \mathcal{M}(U) : U \in \mathcal{I} \} \). Then it is easily seen that \(\mathcal{W} \) is a closure-preserving open neighborhood base of \(H \) in \(Z \).

Theorem 3. If \(X \) is a space such that each closed subspace of \(X \) belongs to \(\mathcal{V} \), then the closed image of \(X \) belongs to \(\mathcal{V} \).

Proof. Let \(f : X \to Y \) be a closed mapping. By [5, Lemma 6.1] there exists a closed subset \(X_0 \) of \(X \) such that \(f|_{X_0} : X_0 \to Y \) is irreducible and \(Y - f(X_0) \) is open and \(\sigma \)-discrete. Since \(f(X_0) \in \mathcal{V} \) by [2, Lemma 3.3], we have by the above lemma \(Y \in \mathcal{V} \).

Theorem 4. Let \(X \) be a space such that, for each metrizable space \(Y \), every closed subspace of \(X \times Y \) is an \(M_1 \)-space. Then \(X \in \mathcal{V} \).

Proof. Let \(F \) be a closed subset of \(X \). Since \(X \) is perfectly normal and submetrizable by the assumption, there exists a contraction \(\rho \) of \(X \) onto a metric space \(\hat{X} \) such that \(\rho(F) \) is closed in \(\hat{X} \). There exists a perfect mapping \(g \) of a zero-dimensional metric space \(Y \) onto \(\hat{X} \). Let \(Z' \) be the subspace of \(X \times Y \) defined by

\[Z' = \{ (x, y) \in X \times Y : \rho(x) = g(y) \}. \]

Let \(f' \), \(\sigma \) be the restrictions to \(Z' \) of the projections onto \(X \), \(Y \), respectively. By the argument of [11, Lemma 5.13, p. 293] \(f' \) is a perfect mapping of \(Z' \) onto \(X \) and \(\sigma \) is a contraction onto \(Y \). By [11, Proposition 2.5, p. 219] there exists a closed subspace \(Z \) of \(Z' \) such that \(f = f'|_Z \) is a perfect and irreducible mapping of \(Z \) onto \(X \). Observe that \(\sigma(f^{-1}(F)) \) is closed in \(Y \). Therefore \(f^{-1}(F) \) has the form

\[f^{-1}(F) = \bigcap \{ G_n : n \in \mathbb{N} \}, \quad G_1 = Z, \ G_{n+1} \subset G_n, n \in \mathbb{N}, \]

where each \(G_n \) is a closed and open set of \(Z \). By the assumption, there exists a base \(\mathcal{B} = \bigcup \{ \mathcal{B}_i : i \in \mathbb{N} \} \) for \(Z \), where each \(\mathcal{B}_i \) is closure-preserving in \(Z \). Set \(B_i = B \cap G_i, B \in \mathcal{B}_i, i \in \mathbb{N} \). Let \(\{ \mathcal{B}_i : \beta \in \Gamma \} \) be the totality of subcollections of \(\mathcal{B} \). Set

\[\mathcal{V}_{B_i} = \bigcup \{ B_i : B \in \mathcal{B}_i \}, \quad \mathcal{V}_\beta = \bigcup \{ \mathcal{V}_{B_i} : i \in \mathbb{N} \}, \]

\[\mathcal{B}_0 = \{ \beta \in \Gamma : \mathcal{V}_\beta \text{ is an open set such that } f^{-1}(F) \subset \mathcal{V}_\beta \}, \]

\[U_\beta = X - f(Z - V_\beta), \quad \beta \in \mathcal{B}_0, \]

\[\mathcal{W} = \{ U_\beta : \beta \in \mathcal{B}_0 \}. \]

By a routine check, it is shown that \(\{ V_\beta : \beta \in \mathcal{B}_0 \} \) is a closure-preserving open neighborhood base of \(f^{-1}(F) \) in \(Z \). Since \(f \) is closed and irreducible, \(\mathcal{W} \) is a closure-preserving open neighborhood base of \(F \) in \(X \) by [2, Lemma 3.3]. This completes the proof.

The author does not know the following: (1) Does every closed subspace of a space \(\in \mathcal{V} \) belong to \(\mathcal{V} \)? (2) If \(X, Y \in \mathcal{V} \), does \(X \times Y \in \mathcal{V} \)?

Finally, the author expresses his thanks for the referee's valuable suggestions.

References

Department of Mathematics, Joetsu University of Education, Joetsu, Niigata 943, Japan