On a certain class of -spaces

Author:
T. Mizokami

Journal:
Proc. Amer. Math. Soc. **87** (1983), 357-362

MSC:
Primary 54E20; Secondary 54E15

DOI:
https://doi.org/10.1090/S0002-9939-1983-0681849-7

MathSciNet review:
681849

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be the class of all -spaces whose every closed subset has a closure-preserving open neighborhood base. A characterization is given, and it is proved that the adjunction space is an -space if and is an -space. Moreover, it is proved that if is a space such that for each metrizable space , every closed subspace of is an -space, then .

**[1]**Carlos J. R. Borges,*On stratifiable spaces*, Pacific J. Math.**17**(1966), 1–16. MR**0188982****[2]**C. R. Borges and D. J. Lutzer,*Characterizations and mappings of 𝑀ᵢ spaces*, Topology Conference (Virginia Polytech. Inst. and State Univ., Blacksburg, Va., 1973) Springer, Berlin, 1974, pp. 34–40. Lecture Notes in Math., Vol. 375. MR**0362239****[3]**Jack G. Ceder,*Some generalizations of metric spaces*, Pacific J. Math.**11**(1961), 105–125. MR**0131860****[4]**Gary Gruenhage,*Stratifiable spaces are 𝑀₂*, Topology Proceedings, Vol. I (Conf., Auburn Univ., Auburn, Ala., 1976), Math. Dept., Auburn Univ., Auburn, Ala., 1977, pp. 221–226. MR**0448307****[5]**Gary Gruenhage,*On the 𝑀₃⇒𝑀₁ question*, The Proceedings of the 1980 Topology Conference (Univ. Alabama, Birmingham, Ala., 1980), 1980, pp. 77–104 (1981). MR**624464****[6]**Robert W. Heath and Heikki J. K. Junnila,*Stratifiable spaces as subspaces and continuous images of 𝑀₁-spaces*, Proc. Amer. Math. Soc.**83**(1981), no. 1, 146–148. MR**620001**, https://doi.org/10.1090/S0002-9939-1981-0620001-6**[7]**R. W. Heath, D. J. Lutzer, and P. L. Zenor,*Monotonically normal spaces*, Trans. Amer. Math. Soc.**178**(1973), 481–493. MR**0372826**, https://doi.org/10.1090/S0002-9947-1973-0372826-2**[8]**Heikki J. K. Junnila,*Neighbornets*, Pacific J. Math.**76**(1978), no. 1, 83–108. MR**0482677****[9]**Keiô Nagami,*The equality of dimensions*, Fund. Math.**106**(1980), no. 3, 239–246. MR**584496**, https://doi.org/10.4064/fm-106-3-239-246**[10]**J. Nagata,*On Hyman's**-spaces*, Topology Conf. (Virginia Polytech. Inst. and State Univ., 1973), pp. 198-208.**[11]**A. R. Pears,*Dimension theory of general spaces*, Cambridge University Press, Cambridge, England-New York-Melbourne, 1975. MR**0394604**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
54E20,
54E15

Retrieve articles in all journals with MSC: 54E20, 54E15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1983-0681849-7

Keywords:
Stratifiable,
-space,
irreducible mapping,
adjunction space,
property ECP

Article copyright:
© Copyright 1983
American Mathematical Society