Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On a certain class of $ M\sb{1}$-spaces


Author: T. Mizokami
Journal: Proc. Amer. Math. Soc. 87 (1983), 357-362
MSC: Primary 54E20; Secondary 54E15
DOI: https://doi.org/10.1090/S0002-9939-1983-0681849-7
MathSciNet review: 681849
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathcal{P}$ be the class of all $ {M_1}$-spaces whose every closed subset has a closure-preserving open neighborhood base. A characterization is given, and it is proved that the adjunction space $ X{ \cup _f}Y$ is an $ {M_1}$-space if $ X \in \mathcal{P}$ and $ Y$ is an $ {M_1}$-space. Moreover, it is proved that if $ X$ is a space such that for each metrizable space $ Y$, every closed subspace of $ X \times Y$ is an $ {M_1}$-space, then $ X \in \mathcal{P}$.


References [Enhancements On Off] (What's this?)

  • [1] C. R. Borges, On stratifiable spaces, Pacific J. Math. 17 (1966), 1-16. MR 0188982 (32:6409)
  • [2] C. R. Borges and D. J. Lutzer, Characterization and mappings of $ {M_1}$-spaces, Topology Conf. (Virginia Polytech. Inst. and State Univ., 1973), pp. 34-40. MR 0362239 (50:14681)
  • [3] J. G. Ceder, Some generalizations of metric spaces, Pacific J. Math. 11 (1961), 105-125. MR 0131860 (24:A1707)
  • [4] G. Gruenhage, Stratifiable spaces are $ {M_2}$, Topology Proc. 1 (1976), 221-226. MR 0448307 (56:6614)
  • [5] -, On the $ {M_3} \Rightarrow {M_1}$ question, Topology Proc. 5 (1980), 77-104. MR 624464 (82h:54043)
  • [6] R. W. Heath and H. J. K. Junnila, Stratifiable spaces as subspaces and continuous images of $ {M_1}$-spaces, Proc. Amer. Math. Soc. 83 (1981), 146-148. MR 620001 (82f:54045)
  • [7] R. W. Heath, D. J. Lutzer and P. L. Zenor, Monotonically normal spaces, Trans. Amer. Math. Soc. 178 (1973), 481-493. MR 0372826 (51:9030)
  • [8] H. J. K. Junnila, Neighbornets, Pacific J. Math. 76 (1968), 83-103. MR 0482677 (58:2734)
  • [9] K. Nagami, The equality of dimensions, Fund. Math. 106 (1980), 239-246. MR 584496 (82d:54037)
  • [10] J. Nagata, On Hyman's $ M$-spaces, Topology Conf. (Virginia Polytech. Inst. and State Univ., 1973), pp. 198-208.
  • [11] A. R. Pears, Dimension theory of general spaces, Cambridge Univ. Press, London and New York, 1975. MR 0394604 (52:15405)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54E20, 54E15

Retrieve articles in all journals with MSC: 54E20, 54E15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1983-0681849-7
Keywords: Stratifiable, $ {M_1}$-space, irreducible mapping, adjunction space, property ECP
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society