Varieties of rings with definable principal congruences

Author:
G. E. Simons

Journal:
Proc. Amer. Math. Soc. **87** (1983), 397-402

MSC:
Primary 16A38; Secondary 08B05, 16A12, 16A70

MathSciNet review:
684626

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A variety of rings has definable principal congruences (DPC) if there is a first order sentence defining principal two-sided ideals for all rings in . The key result is that for any ring , does not have DPC if . This allows us to show that if has DPC, then is a polynomial identity ring. Results from the theory of PI rings are used to prove that for a semiprime ring , has DPC if and only if is commutative. An example of a finite, local, noncommutative ring with having DPC is given.

**[1]**Kirby A. Baker,*Definable normal closures in locally finite varieties of groups*, Houston J. Math.**7**(1981), no. 4, 467–471. MR**658562****[2]**John T. Baldwin and Joel Berman,*The number of subdirectly irreducible algebras in a variety*, Algebra Universalis**5**(1975), no. 3, 379–389. MR**0392765****[3]**Stanley Burris,*An example concerning definable principal congruences*, Algebra Universalis**7**(1977), no. 3, 403–404. MR**0441822****[4]**Stanley Burris and John Lawrence,*Definable principal congruences in varieties of groups and rings*, Algebra Universalis**9**(1979), no. 2, 152–164. MR**523930**, 10.1007/BF02488027**[5]**S. Burris and J. Lawrence,*A correction to: “Definable principal congruences in varieties of groups and rings” [Algebra Universalis 9 (1979), no. 2, 152–164; MR 80c:08004]*, Algebra Universalis**13**(1981), no. 2, 264–267. MR**631561**, 10.1007/BF02483839**[6]**Stanley Burris and H. P. Sankappanavar,*A course in universal algebra*, Graduate Texts in Mathematics, vol. 78, Springer-Verlag, New York-Berlin, 1981. MR**648287****[7]**P. M. Cohn,*Universal algebra*, 2nd ed., Mathematics and its Applications, vol. 6, D. Reidel Publishing Co., Dordrecht-Boston, Mass., 1981. MR**620952****[8]**K. E. Eldridge,*Orders for finite noncommutative rings with unity*, Amer. Math. Monthly**75**(1968), 512–514. MR**0230772****[9]**George Grätzer,*Universal algebra*, 2nd ed., Springer-Verlag, New York-Heidelberg, 1979. MR**538623****[10]**Nathan Jacobson,*𝑃𝐼-algebras*, Lecture Notes in Mathematics, Vol. 441, Springer-Verlag, Berlin-New York, 1975. An introduction. MR**0369421****[11]**Joachim Lambek,*Lectures on rings and modules*, 2nd ed., Chelsea Publishing Co., New York, 1976. MR**0419493****[12]**Ralph McKenzie,*Para primal varieties: A study of finite axiomatizability and definable principal congruences in locally finite varieties*, Algebra Universalis**8**(1978), no. 3, 336–348. MR**0469853****[13]**Louis Halle Rowen,*Polynomial identities in ring theory*, Pure and Applied Mathematics, vol. 84, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MR**576061****[14]**Walter Taylor,*Residually small varieties*, Algebra Universalis**2**(1972), 33–53. MR**0314726**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
16A38,
08B05,
16A12,
16A70

Retrieve articles in all journals with MSC: 16A38, 08B05, 16A12, 16A70

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1983-0684626-6

Keywords:
Varieties of rings,
definable principal congruences,
polynomial identity rings

Article copyright:
© Copyright 1983
American Mathematical Society