ON EXTREME POINTS OF SUBORDINATION FAMILIES

YUSUF ABU MUHANNA

Abstract. Let F be the set of analytic functions in $U = \{z: |z| < 1\}$ subordinate to a univalent function f. Let $D = f(U)$. For $g(z) = f(\phi(z)) \in F$, let $\lambda(\theta)$ denote the distance between $g(e^{i\theta})$ and ∂D (boundary of D). We obtain the following results.

1. If f' is Nevanlinna then $\int_0^{2\pi} \log(1 - |\phi(e^{i\theta})|) \, d\theta = -\infty$ if and only if
 \[\int_0^{2\pi} \log(1 - |\phi(e^{i\theta})|) \, d\theta = -\infty. \]

2. If g is an extreme point of the closed convex hull of F then
 \[\int_0^{2\pi} \log(1 - |\phi(e^{i\theta})|) \, d\theta = -\infty. \]

for the case when D is a Jordan domain subset to a half-plane and f' is Nevanlinna.

1. Introduction. Let $U = \{z: |z| < 1\}$ and let A denote the set of functions analytic in U. Let B_0 denote the subset of A consisting of functions ϕ that satisfy $|\phi(z)| < 1$ for $z \in U$ and $\phi(0) = 0$.

Throughout this paper we assume that $f \in A$ and f is univalent in U. Let F denote the subset of A consisting of functions g that are subordinate to f in U. This means that $g \in A$, $g(0) = f(0)$ and $g(U) \subset f(U)$. These conditions are equivalent to the existence of $\phi \in B_0$ so that $g(z) = f(\phi(z))$. F is characterized by

\[g(z) = f(\phi(z)) \]

where $\phi \in B_0$. Equation (1) defines a one-to-one correspondence between F and B_0.

Let D denote $f(U)$. For $g \in F$, let

\[g(e^{i\theta}) = \lim_{r \to 1^+} g(re^{i\theta}). \]

Since $f \in H^p$, for $p < \frac{1}{2}$, $g(e^{i\theta})$ exists almost everywhere. Let $\lambda(\theta)$ denote the distance between $g(e^{i\theta})$ and ∂D where ∂D denotes the boundary of D. T. H. MacGregor and the author [1] proved that if f is convex, bounded, and if ∂D is sufficiently smooth, then g is an extreme point of F if and only if

\[\int_0^{2\pi} \log(\lambda(\theta)) \, d\theta = -\infty. \]

This result implies the well-known fact that ϕ is an extreme point of B_0 if and only if

\[\int_0^{2\pi} \log(1 - |\phi(e^{i\theta})|) \, d\theta = -\infty. \]

Received by the editors May 13, 1982. Presented at the AMS 795th meeting in Bellingham, Washington, June 19, 1982.

1980 Mathematics Subject Classification. Primary 30C80; Secondary 30C55.

Key words and phrases. Analytic function, bounded function, convex function, extreme point, Jordan domain, Nevanlinna class, subordination, univalent function.

©1983 American Mathematical Society
0002-9939/82/0000-0869/$02.25
[2, p. 125]. Other results in this direction can be found in [1, 4, 5 and 7].

It was also proved [1] that when \(f \) is bounded, convex and \(\partial D \) is sufficiently smooth the correspondence between \(F \) and \(B_0 \), given by \(g(z) = f(\phi(z)) \), provides a one-to-one correspondence between the extreme points of \(B_0 \) and the extreme points of \(F \). This is to say,

\[
\int_0^{2\pi} \log \lambda(\theta) \, d\theta = -\infty \quad \text{if and only if} \quad \int_0^{2\pi} \log(1 - |\phi(e^{i\theta})|) \, d\theta = -\infty.
\]

In §2, we prove that statement (5) holds for the case when \(f \) is univalent and \(f' \) is in the Nevanlinna class of analytic functions.

In §3, we give a necessary condition on the extreme points of the closed convex hull of \(F \) for the case when \(D = f(U) \) lies in a half-plane and \(\partial D \) is a Jordan curve.

2. Functions subordinate to a univalent function with a Nevanlinna derivative. We let \(d(z, \Gamma) \) denote the distance between \(z \) and a closed set \(\Gamma \), \(m(A) \) denote the Lebesgue measure of \(A \) and \(\log^+ x = \max\{0, \log x\} \).

Theorem 1. Let \(f \) be analytic and univalent in \(U \). Assume that \(f' \) is in the Nevanlinna class. Let \(D \) denote \(f(U) \) and let \(F \) denote the set of functions subordinate to \(f \). For \(g(z) = f(\phi(z)) \in F \), let \(\lambda(\theta) \) denote \(d(g(e^{i\theta}), \partial D) \). Then:

(a) \(\int_0^{2\pi} \log^+ \lambda(\theta) \, d\theta \) is convergent.

(b) \(\int_0^{2\pi} \log \lambda(\theta) \, d\theta = -\infty \) if and only if \(\int_0^{2\pi} \log(1 - |\phi(e^{i\theta})|) \, d\theta = -\infty \).

Proof. Since \(f \) is univalent, it follows that

\[
(6) \quad \frac{1}{4} (1 - |z|^2) |f'(z)| \le d(f(z), \partial D) \le (1 - |z|^2) |f'(z)|, \quad z \in U
\]

[8, p. 22]. When \(g(e^{i\theta}) \) and \(\phi(e^{i\theta}) \) exist and \(|\phi(e^{i\theta})| < 1 \), we obtain

\[
(7) \quad \frac{1}{4} (1 - |\phi(e^{i\theta})|^2) |f'(\phi(e^{i\theta}))| \le \lambda(\theta) \le (1 - |\phi(e^{i\theta})|^2) |f'(\phi(e^{i\theta}))|.
\]

Hence (7) implies that \(\lambda(\theta) \le |f'(\phi(e^{i\theta}))| \) and consequently \(0 \le \log^+ \lambda(\theta) \le \log^+ |f'(\phi(e^{i\theta}))| \). Since \(f' \) is Nevanlinna and \(\phi \) is bounded, it follows that \(f'(\phi(z)) \) is also Nevanlinna. Hence \(|f'(\phi(e^{i\theta}))| \in L^1 \) and in particular \(\log^+ |f'(\phi(e^{i\theta}))| \in L^1 \) [2, p. 16]. Therefore, \(\int_0^{2\pi} \log^+ \lambda(\theta) \, d\theta \) is convergent, which is part (a).

Next, let \(A = \{\theta: g(e^{i\theta}) \text{ exists and } \lambda(\theta) = 0\} \). If \(m(A) > 0 \) then it follows that

\[
(8) \quad \frac{1}{4} (1 - |\phi(e^{i\theta})|^2) |f'(\phi(e^{i\theta}))| \le \lambda(\theta) \le 2(1 - |\phi(e^{i\theta})|) |f'(\phi(e^{i\theta}))|
\]

which also holds for almost every \(\theta \). Thus we conclude that \(-\infty \le \int_0^{2\pi} \log \lambda(\theta) \, d\theta < M \), for some constant \(M \), because \(\log^+ \lambda(\theta) \in L^1 \). This together with (8) implies that

\[
(9) \quad -2\pi \log 4 + \int_0^{2\pi} \log |f'(\phi(e^{i\theta}))| \, d\theta + \int_0^{2\pi} \log(1 - |\phi(e^{i\theta})|) \, d\theta \le \int_0^{2\pi} \log \lambda(\theta) \, d\theta \le \int_0^{2\pi} \log |f'(\phi(e^{i\theta}))| \, d\theta + 2\pi \log 2
\]

and so part (b) follows.
We close this section by noting that the conclusion of Theorem 1 is true for the case when \(g \) is subordinate to a close to convex function \(f \). This is so because it was shown that \(f' \in H^{1/3} \) [3] and thus \(f' \) is Nevanlinna.

3. Jordan domains. We let \(cA \) denote \(C \setminus A \).

Lemma 1. Let \(D \) be a bounded Jordan domain (\(\partial D \) is a Jordan curve). Let \(g \) be a nonconstant bounded analytic function in \(U \). If \(g(e^{i\theta}) \in \overline{D} \) for almost all \(\theta \) then \(g(U) \subset D \).

Proof. Let \(G = g(U) \). We want to show that \(G \subset D \). We shall show first that \(\partial G \subset D \). Assume, to the contrary, that there is a point \(w_0 \in \partial G \) and \(w_0 \notin \overline{D} \). Let \(\epsilon = d(w_0, D) \). Since \(w_0 \in \partial G \) and \(w_0 \notin \overline{D} \), there exists a point \(w_1 \in cG \) and \(w_1 \notin \overline{D} \) so that \(|w_0 - w_1| < \epsilon/2 \). It follows that \(d(w_1, D) > \epsilon/2 \). Let

\[
(10) \quad h(z) = \frac{1}{g(z) - w_1}, \quad z \in U,
\]

\(h(z) \) is analytic, bounded and \(h(e^{i\theta}) = \frac{1}{(g(e^{i\theta}) - w_1)} \) for almost all \(\theta \). Since \(g(e^{i\theta}) \in \overline{D} \) for almost all \(\theta \), it follows that \(|h(e^{i\theta})| \leq 2/\epsilon \) for almost all \(\theta \). The Poisson Formula implies that \(|h(z)| \leq 2/\epsilon \) for every \(z \in U \). This contradicts \(|w_1 - w_0| < \epsilon/2 \). Hence \(\partial G \subset \overline{D} \).

Next, we shall show that \(L = \overline{G} \cap cD \) is open. Let \(w \in L \). Since \(cD \) is open, there is a neighborhood of \(w \), \(N_{\epsilon/2}(w) \), so that \(N_{\epsilon/2}(w) \subset c\overline{D} \). \(N_{\epsilon/2}(w) \subset L \), because if not then \(N_{\epsilon/2}(w) \cap cG \neq \emptyset \) and, since \(N_{\epsilon/2}(w) \cap \overline{G} \neq \emptyset \), one concludes that \(N_{\epsilon/2}(w) \cap \partial G \neq \emptyset \). Thus there exists \(w_0 \in N_{\epsilon/2}(w) \cap \partial G \) and \(w_0 \notin \overline{D} \). This then contradicts the first part of the proof of the lemma. Hence \(L \) is open.

Let \(u \in \partial L \) and assume that \(u \notin \overline{D} \). Since \(cL = cG \cup \overline{D} \) it follows that every neighborhood of \(u \), with radius less than \(d(u, D) \), intersects \(cG \). This implies that \(u \notin \partial D \) and consequently \(u \in \overline{D} \). Hence \(\partial L \subset \partial D \) and consequently \(cD = L \cup (cL \cap \overline{cD}) \). Since \(cD \) is connected (\(\partial D \) is a Jordan curve) and since \(L \) is bounded, we conclude that \(L \) is empty and then \(\overline{G} \subset \overline{D} \). This and Jordan’s Theorem [7, p. 115] imply that \(G \subset D \).

The following lemma is a generalization of Lemma 1.

Lemma 2. Let \(D \) be a Jordan domain subset to a half-plane \(H \). Let \(g \) be a nonconstant function analytic in \(U \) so that \(g(U) \subset H \). If \(g(e^{i\theta}) \in \overline{D} \) for almost every \(\theta \) then \(g(U) \subset D \).

Proof. Let \(T \) be a Möbius transformation that maps \(H \) onto \(U \). Let \(h(z) = T(g(z)) \). \(h(z) \) is bounded, analytic, \(h(e^{i\theta}) = T(g(e^{i\theta})) \) exists for almost all \(\theta \) and \(h(e^{i\theta}) \in \overline{T(D)} \). Since \(T \) is a homeomorphism and \(\partial D \) is a Jordan curve, it follows that \(\partial(T(D)) \) is a Jordan curve. Hence, by Lemma 1, \(h(U) \subset T(D) \) and consequently \(g(U) \subset D \).

We now apply Lemma 2 to get the following theorem.

Theorem 2. Let \(f \) be a univalent analytic function in \(U \). Assume that \(D = f(U) \) is a Jordan domain subset to a half-plane \(H \). Let \(F \) be the set of analytic functions subordinate to \(f \). If \(g \) is an extreme point of the closed convex hull of \(F \) then \(\int_0^\pi \log \lambda(\theta)/(1 + \lambda(\theta)) \, d\theta = -\infty \).
Remark. \(\lambda(\theta)/(1 + \lambda(\theta)) \) can be replaced by \(\lambda(\theta) \) when \(f \) is bounded.

Proof. Assume that \(\int_0^{2\pi} \log(\lambda(\theta)/(1 + \lambda(\theta))) \, d\theta > -\infty \). Since \(\lambda(\theta)/(1 + \lambda(\theta)) < 1 \), \(\log(\lambda(\theta)/(1 + \lambda(\theta))) \in L^1 \). Let

\[
h(z) = z \exp \left\{ -\frac{1}{2\pi} \int_0^{2\pi} (e^{i\theta} \log \frac{\lambda(t)}{1 + \lambda(t)}) \, dt \right\}.
\]

It is known that \(h \in H^\infty \) and \(|h(e^{i\theta})| = \lambda(\theta)/(1 + \lambda(\theta)) \) for almost all \(\theta \) [2, pp. 24, 126]. Since \(|h(e^{i\theta})| \leq \lambda(\theta) \), it follows that \(g(e^{i\theta}) = h(e^{i\theta}) \in D \) for almost all \(\theta \). Moreover, \(h \in H^\infty \) implies that \(g(z) = h(z) \) is in a half-plane \(H_1 \), containing \(H \), for all \(z \in U \). Thus, by Lemma 2, it follows that \(g(z) = h(z) \in D \) for almost all \(z \in U \) and so \(g(z) = h(z) \in F \). Since \(h \equiv 0 \), \(g \) cannot be an extreme point.

We come now to the main result of this section.

Theorem 3. Let \(f \) be a univalent analytic function in \(U \). Assume that \(f' \) is Nevanlinna and \(D = f(U) \) is a Jordan domain subset to a half-plane \(H \). Let \(F \) be the set of analytic functions subordinate to \(f \). If \(g(z) = f(\phi(z)) \) is an extreme point of the closed convex hull of \(F \) then \(\int_0^{2\pi} \log(1 - |\phi(e^{i\theta})|) \, d\theta = -\infty \).

Remark. In other words, \(\{ g \in F : g \) is an extreme point of the closed convex hull of \(F \}\} \subset \{ f(\phi) : \phi \) is an extreme point of \(B_0 \}\}.

Proof. Theorem 2 implies that \(\int_0^{2\pi} \log(\lambda(\theta)/(1 + \lambda(\theta))) \, d\theta = -\infty \). Let \(E = \{ \theta : \lambda(\theta) \text{ exists and } \lambda(\theta) \leq 1 \} \) and let \(G = \{ \theta : \lambda(\theta) \text{ exists and } \lambda(\theta) > 1 \} \). \(m(E \cup G) = 2\pi \). For \(\theta \in E \), we have

\[
\frac{\lambda(\theta)}{2} \leq \frac{\lambda(\theta)}{1 + \lambda(\theta)} \leq \lambda(\theta)
\]

and for \(\theta \in G \), we have \(1 + \lambda(\theta) < 2\lambda(\theta) \) and so

\[
\frac{1}{2} < \frac{\lambda(\theta)}{1 + \lambda(\theta)} < 1.
\]

(13) implies that \(\int_G \log(\lambda(\theta)/(1 + \lambda(\theta))) \, d\theta \) is convergent. Therefore,

\[
\int_0^{2\pi} \log(\frac{\lambda(\theta)}{1 + \lambda(\theta)}) \, d\theta = \int_E \log(\frac{\lambda(\theta)}{1 + \lambda(\theta)}) \, d\theta = -\infty
\]

and by (12) \(\int_E \log \lambda(\theta) \, d\theta = -\infty \). Because of Theorem 1 this gives that \(\int_0^{2\pi} \log \lambda(\theta) \, d\theta = -\infty \) and consequently \(\int_0^{2\pi} \log(1 - |\phi(e^{i\theta})|) \, d\theta = -\infty \).

Remarks. 1. The conclusion of Theorem 3 follows for the case when \(f \) is convex. This is because \(f(D) \) is a Jordan domain and \(f' \in H^{1/2} \) [3].

2. Theorem 2 was proved by T. H. MacGregor and the author [1] for the case when \(f \) is convex and \(f(U) \) is not a half-plane.

3. The converse of Theorem 3 does not hold in general. For example, the extreme points of \(F \), when \(f = (1 + z)/(1 - z) \), are characterized by

\[
g = \frac{1 + xz}{1 - xz}, \quad |x| = 1.
\]

Other examples in [1 and 6] show this claim.

4. We conjecture that Theorems 1 and 3 hold for any unrestricted univalent function \(f \).
ACKNOWLEDGEMENT. The author wishes to thank the University of Petroleum and Minerals for supporting this research.

REFERENCES

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF PETROLEUM AND MINERALS, DHAHRAN, SAUDI ARABIA