Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


Divergent Jacobi polynomial series

Author: Christopher Meaney
Journal: Proc. Amer. Math. Soc. 87 (1983), 459-462
MSC: Primary 42C10; Secondary 43A25, 58G25
MathSciNet review: 684639
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Fix real numbers $ \alpha \geqslant \beta \geqslant - \tfrac{1}{2}$, with $ \alpha > - \tfrac{1}{2}$, and equip $ [ - 1,1]$ with the measure $ d\mu (x) = {(1 - x)^\alpha }{(1 + x)^\beta }dx$. For $ p = 4(\alpha + 1)/(2\alpha + 3)$ there exists $ f \in {L^p}(\mu )$ such that $ f(x) = 0$ a.e. on $ [ - 1,0]$ and the appropriate Jacobi polynomial series for $ f$ diverges a.e. on $ [ - 1,1]$. This implies failure of localization for spherical harmonic expansions of elements of $ {L^{2d/(d + 1)}}(X)$, where $ X$ is a sphere or projective space of dimension $ d > 1$.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42C10, 43A25, 58G25

Retrieve articles in all journals with MSC: 42C10, 43A25, 58G25

Additional Information

PII: S 0002-9939(1983)0684639-4
Keywords: Jacobi polynomial, localization, compact two-point homogeneous space, Laplace-Beltrami operator, spherical harmonic, zonal
Article copyright: © Copyright 1983 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia