Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On inequalities of periodic functions and their derivatives


Author: Z. Ditzian
Journal: Proc. Amer. Math. Soc. 87 (1983), 463-466
MSC: Primary 26D10
DOI: https://doi.org/10.1090/S0002-9939-1983-0684640-0
MathSciNet review: 684640
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The inequality $ {\left\Vert f \right\Vert _B} \leqslant {a_k}{\left\Vert {{f^{(k)}}} \right\Vert _B}$ is proved for many spaces of periodic functions. An analogue for sequences is also given.


References [Enhancements On Off] (What's this?)

  • [1] E. F. Beckenbach and R. Bellman, Inequalities, Springer-Verlag, Berlin and New York, 1961. MR 0158038 (28:1266)
  • [2] R. Bellman, A note on periodic functions and their derivatives, J. London Math. Soc. 18 (1943). 140-142. MR 0009965 (5:230a)
  • [3] Z. Ditzian, Some remarks on inequalities of Landau and Kolmogorov, Aequationes Math. 12 (1975), 145-51. MR 0380503 (52:1403)
  • [4] K. Fan, O. Taussky and J. Todd, Discrete analogues of inequalities by Wirtinger, Monatsh. Math. Physik 59 (1955), 73-90. MR 0070676 (17:19b)
  • [5] A. Kolmogorov, On inequalities between upper bounds of the successive derivatives of an arbitrary function on an infinite interval, Amer. Math. Soc. Transl. no. 4 (1949) (Russian original 1939). MR 0031009 (11:86d)
  • [6] D. G. Northcott, Some inequalities between periodic functions and their derivatives, J. London Math. Soc. 14 (1939), 198-202. MR 0000417 (1:71c)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 26D10

Retrieve articles in all journals with MSC: 26D10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1983-0684640-0
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society