Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Approximating the absolutely continuous measures invariant under general maps of the interval


Author: Abraham Boyarsky
Journal: Proc. Amer. Math. Soc. 87 (1983), 475-480
MSC: Primary 28D05; Secondary 41A30, 58F11, 58F20
DOI: https://doi.org/10.1090/S0002-9939-1983-0684642-4
MathSciNet review: 684642
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \tau :I \to I$ be a nonsingular, piecewise continuous transformation which admits a unique absolutely continuous invariant measure $ \mu $ with density function $ {f^ * }$. The main result establishes the fact that $ {f^ * }$ can be approximated weakly by the density functions of a sequence of measures invariant under piecewise linear Markov maps $ \left\{ {{\tau _n}} \right\}$ which approach $ \tau $ uniformly.


References [Enhancements On Off] (What's this?)

  • [1] A. Lasota and J. A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc. 186 (1973), 481-488. MR 0335758 (49:538)
  • [2] T.-Y. Li, Finite approximation for the Frobenius-Perron operator. A solution to Ulam's conjecture, J. Approx. Theory 17 (1976), 177-186. MR 0412689 (54:811)
  • [3] N. Friedman and A. Boyarsky, Matrices and eigenfunctions induced by Markov maps, Linear Algebra Appl. 38 (1981), 141-147. MR 636032 (83e:58072a)
  • [4] G. Choquet, Lectures on analysis, Vol. I, Benjamin, New York, 1969.
  • [5] F. Topsoe, Preservation of weak convergence under mappings, Ann. Math. Statist. 38 (1967), 1661-1665. MR 0219097 (36:2180)
  • [6] A. Boyarsky and M. Scarowsky, On a class of transformations which have unique absolutely continuous invariant measures, Trans. Amer. Math. Soc. 255 (1979), 243-262. MR 542879 (80i:28033)
  • [7] M. Misiurewicz, Absolutely continuous invariant measures for certain maps of the interval, Inst. Hautes Ëtudes Sci. Publ. Math. 52 (1980).
  • [8] D. Ruelle, Applications conservant une mesure absolument continue par rapport à dx sur $ [0,1]$, Comm. Math. Phys. 55 (1977), 47-51. MR 0467840 (57:7691)
  • [9] R. Bowen, Invariant measures for Markov maps of the interval, Comm. Math. Phys. 69 (1979), 1-17. MR 547523 (81e:28010)
  • [10] P. Collet and J.-P. Eckmann, Iterated maps of the interval, Birkhauser, Boston, Mass., 1980. MR 613981 (82j:58078)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28D05, 41A30, 58F11, 58F20

Retrieve articles in all journals with MSC: 28D05, 41A30, 58F11, 58F20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1983-0684642-4
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society