Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The $ \hat A$-genus of complex hypersurfaces and complete intersections


Author: Robert Brooks
Journal: Proc. Amer. Math. Soc. 87 (1983), 528-532
MSC: Primary 53C55; Secondary 14F25, 14M10, 53C40, 57R20
DOI: https://doi.org/10.1090/S0002-9939-1983-0684651-5
MathSciNet review: 684651
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this note, we classify the even-dimensional complex hypersurfaces and complete intersections which carry a metric of positive scalar curvature. This is done by computing the $ \hat A$-genus of these manifolds to eliminate all cases not known to carry such a metric.


References [Enhancements On Off] (What's this?)

  • [1] F. Hirzebruch, Topological methods in algebraic geometry, 3rd ed., Springer-Verlag, Berlin and New York, 1978. MR 1335917 (96c:57002)
  • [2] P. A. Griffiths and J. Harris, Principles of algebraic geometry, Wiley, New York, 1978. MR 507725 (80b:14001)
  • [3] M. Gromov and H. B. Lawson, Jr., The classification of simply connected manifolds of positive scalar curvature, Ann. of Math. (2) 111 (1980), 423-434. MR 577131 (81h:53036)
  • [4] H. B. Lawson and M. L. Michelsohn, Clifford bundles, immersions of manifolds, and the vector field problem, J. Differential Geom. 15 (1980), 237-267. MR 614369 (82g:53065)
  • [5] A Lichnerowicz, Spineurs harmoniques, C. R. Acad. Sci. Paris 257 (1963), 7-9. MR 0156292 (27:6218)
  • [6] S. T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), 339-411. MR 480350 (81d:53045)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C55, 14F25, 14M10, 53C40, 57R20

Retrieve articles in all journals with MSC: 53C55, 14F25, 14M10, 53C40, 57R20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1983-0684651-5
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society