Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Embeddings in minimal Hausdorff spaces


Author: J. Vermeer
Journal: Proc. Amer. Math. Soc. 87 (1983), 533-535
MSC: Primary 54D25; Secondary 03E35, 54A35, 54C25, 54G20
DOI: https://doi.org/10.1090/S0002-9939-1983-0684652-7
MathSciNet review: 684652
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that not every semiregular space is embeddable as an open and dense set of some minimal Hausdorff space. Also a space is constructed for which it is not decidable in Z.F.C whether such an embedding exists.


References [Enhancements On Off] (What's this?)

  • [Il] S. Iliadis, Absolutes of Hausdorff spaces, Dokl. Akad. Nauk SSSR 149 (1963), 22-25 = Soviet Math. Dokl. 41 (1963), 295-298. MR 0157354 (28:589a)
  • [Ka] M. Katelov, On $ H$-closed extensions of topological spaces, Časopis Pěst. Math. 72 (1947), 17-32. MR 0022069 (9:153d)
  • [Ve] J. Vermeer, Minimal Hausdorff and compact like spaces, Topological Structures. II, Math. Centrum, Amsterdam, 1979. MR 565847 (81g:54018)
  • [VeW] J. Vermeer and E. Wattel, Projective elements in categories with perfect $ \theta $-continuous maps, Canad. J. Math. 4 (1981), 872-884.
  • [Wo] R. G. Woods, A survey of absolutes of topological spaces, Topological Structures. II, Math. Centrum, Amsterdam, 1979. MR 565852 (81d:54019)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54D25, 03E35, 54A35, 54C25, 54G20

Retrieve articles in all journals with MSC: 54D25, 03E35, 54A35, 54C25, 54G20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1983-0684652-7
Keywords: Minimal Hausdorff, semiregular
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society