LEBESGUE SETS AND INSERTION OF A CONTINUOUS FUNCTION

ERNEST P. LANE

ABSTRACT. Necessary and sufficient conditions in terms of Lebesgue sets are presented for the following two insertion properties for real-valued functions defined on a topological space: (1) If $g < f$ there is a continuous function h such that $g \leq h \leq f$, and for each x for which $g(x) < f(x)$ then $g(x) < h(x) < f(x)$.
(2) If $g < f$ there is a continuous function h such that $g < h < f$.

1. Statement of results. All functions considered are real-valued. Let R (respectively, Q) denote the real (respectively, rational) numbers and write $g \leq f$ (respectively, $g < f$) in case $g(x) \leq f(x)$ (respectively, $g(x) < f(x)$) for each x in the space. For b in R the Lebesgue sets for a function f are defined by $L_b(f) = \{x: f(x) \leq b\}$ and $L^b(f) = \{x: f(x) \geq b\}$. Let $C^*(X)$ denote the lattice of continuous, bounded, and real-valued functions on X. The main results of this paper utilize Lebesgue sets to characterize certain insertion properties of a continuous function, and they are based on the following ([2, Theorem 3.5; 8, Theorem 2.1]):

THEOREM 1. If $g < f$ then there is a continuous function h such that $g < h < f$ if and only if for any rational numbers a and b such that $a < b$ the Lebesgue sets $L_b(g)$ and $L^a(f)$ are completely separated.

The following is stated on p. 444 of [11].

THEOREM 2. Let X be a topological space and let $L(X)$ and $U(X)$ be classes of bounded functions defined on X such that any constant function is in $L(X) \cap U(X)$ and such that if $g \in U(X)$, $f \in L(X)$, and $r \in R$ then $g \wedge r \in U(X)$ and $f \vee r \in L(X)$. The following are equivalent:

(i) If $f \in L(X)$, $g \in U(X)$, and $g \leq f$ there exists h in $C^*(X)$ such that $g \leq h \leq f$ and such that $g(x) < h(x) < f(x)$ for each x for which $g(x) < f(x)$.

(ii) If $f \in L(X)$, $g \in U(X)$, and $r \in R$ the Lebesgue sets $L_r(f)$ and $L^r(g)$ are zero sets in X.

(iii) If $f \in L(X)$ and $g \in U(X)$ then f (respectively, g) is the pointwise limit of and increasing (respectively, decreasing) sequence of continuous functions.

In the situation where $U(X)$ and $L(X)$ are the classes of upper and lower semicontinuous functions, respectively, the equivalence of (i) and (ii) of the above theorem is due to Michael [12], the equivalence of (ii) and (iii) is due to Tong [14], and each of the conditions being equivalent to X is perfectly normal. If $U(X)$ and $L(X)$ are the classes of normal upper and normal lower semicontinuous functions,
respectively, the equivalence of (i), (ii), (iii), and X is an O$_2$ space is established in [8].

Necessary and sufficient conditions in order for a space to satisfy condition (i) of Theorem 2 for general classes of functions are considered in [12, 3, 4, 7, and 10]. Let $B(X)$ denote the Banach lattice of all bounded real-valued functions on a space X. If C is a sublattice of the power set of X to which \emptyset and X belong, the smallest convex cone in $B(X)$ that contains the constant functions $1_D, D \in C$, is denoted by $cn(C)$ and its closure by $\overline{cn}(C)$. The results of Blatter and Seever in [3 and 4] require that the classes $U(X)$ and $L(X)$ can be characterized as $\overline{cn}(A)$ and $\overline{cn}(B)$, respectively, for some sublattices A and B of the power set of X and that $A \subset B_0 (= \text{intersection of sequences in } B)$ and $B \subset A_\sigma (= \text{union of sequences in } A)$. The necessary (as proved by Powderly [13]) and sufficient condition of [7] places restrictions on the function $f - g$. These limitations are avoided in Theorem 2.

A portion of the following result is stated on p. 478 of [11].

THEOREM 3. Let $L(X)$ and $U(X)$ be classes of bounded real-valued functions on X such that $C^*(X) \subset L(X) \cap U(X)$. The following are equivalent:

(i) For $f \in L(X), g \in U(X)$ and $g < f$ there exists $h \in C^*(X)$ such that $g < h < f$.

(ii) If $f \in L(X), g \in U(X)$ and $g < f$ then for each $r \in Q$ there exist disjoint sets A_r and B_r such that $L_r(f)$ and $X - A_r$ are completely separated, $L_r'(g)$ and $X - B_r$ are completely separated, and each of $\{X - (B_r \cup L_r(f)): r \in Q\}$ and $\{X - (A_r \cup L_r'(g)): r \in Q\}$ covers X.

(iii) If $f \in L(X), g \in U(X)$ and $g < f$ then for each rational number r there exist disjoint sets A_r and B_r such that $L_r(f)$ and $X - A_r$ are completely separated, $L_r'(g)$ and $X - B_r$ are completely separated, and $\{X - (A_r \cup B_r): r \in Q\}$ covers X.

In the situation in which $L(X)$ and $U(X)$ are the lattices of lower and upper semicontinuous functions, respectively, results of Dowker [5] and Katětov [6] show that a space satisfies (i) of the above theorem if and only if X is normal and countably paracompact. Other specific cases are given in [10, Theorem 4.2]. Necessary and sufficient conditions for a space to satisfy (i) of Theorem 3 for general classes of functions are given in [3, 4, and 7] but these results have restrictions analogous to those mentioned in the discussion following Theorem 2.

It is noted that the bounded condition placed on the functions in Theorems 2 and 3 causes no loss in generality if the properties that define the classes $L(X)$ and $U(X)$ are preserved under an order preserving homeomorphism from R onto a finite interval.

2. Proofs of results. The following lemma is used in combination with Theorem 1 in proving Theorems 2 and 3. The argument is adapted from a technique used in the proof of Theorem 3.3 in [3] and is included here for completeness.

LEMMA 1. Let f, g and k be bounded functions such that $g \leq k \leq f$ and $k \in C^*(X)$. If there exist sequences $\{a_n\}$ and $\{b_n\}$ in $C^*(X)$ such that $g \leq a_n$ and $b_n \leq f$ for all n, $\inf_n a_n(x) < f(x)$ and $\sup_n b_n(x) > g(x)$ for each x for which $g(x) < f(x)$, then there exists h in $C^*(X)$ such that $g \leq h \leq f$ and for each x for which $g(x) < f(x)$ then $g(x) < h(x) < f(x)$.
PROOF. Using the notation of the lemma, set
\[h = \sum_{n=1}^{\infty} 2^{-n-1}(a_n \land k + b_n \land k). \]
Since \(g \leq a_n \land k \), \(\sum_{n=1}^{\infty} 2^{-n}g \leq \sum_{n=1}^{\infty} 2^{-n}(a_n \land k) \), or \(g \leq \sum_{n=1}^{\infty} 2^{-n}(a_n \land k) \). Similarly, from \(f \geq a_n \land k \) it follows that \(f \geq \sum_{n=1}^{\infty} 2^{-n}(a_n \land k) \). Thus \(g \leq \sum_{n=1}^{\infty} 2^{-n}(a_n \land k) \leq f \). In the same fashion show that \(g \leq \sum_{n=1}^{\infty} 2^{-n}(k \lor b_n) \leq f \).

From the definition of \(h \) it follows that \(g \leq h \leq f \). Let \(x \) be such that \(g(x) < f(x) \). Choose \(N \) so that \(a_N(x) < f(x) \). Then \(\sum_{n=1}^{\infty} 2^{-n}(a_n \land k)(x) = \sum_{n=N}^{\infty} 2^{-n}(a_n \land k)(x) + 2^{-N}(a_N \land k)(x) < \sum_{n=N}^{\infty} 2^{-n}(a_n \land k)(x) + 2^{-N}f(x) \leq \sum_{n=1}^{\infty} 2^{-n}f(x) = f(x) \).

Similarly, show that \(g(x) < \sum_{n=1}^{\infty} 2^{-n}(b_n \lor k)(x) \). Hence \(g(x) < h(x) < f(x) \) whenever \(g(x) < f(x) \).

That condition (ii) of Theorem 2 implies (i) is a consequence of Proposition 6.1 of [3]. A proof is given here that uses the above lemma since this approach seems considerably more direct.

PROOF OF THEOREM 2. (i)\(\Rightarrow \) (ii) If \(g \in U(X) \) and \(r \in R \) then by hypothesis \(g \land r \in U(X) \) and \(r \in L(X) \). By (i) there is a continuous function \(h \) such that \(g \land r \leq h \leq r \) and if \(g(x) < r \) then \(g(x) < h(x) < r \); \(L^*(g) \) is a zero set since \(L^*(g) = \{ x : h(x) = r \} \). Similarly show that \(L_r(f) \) is a zero set.

(ii)\(\Rightarrow \) (iii) If \(f \) is a lower semicontinuous function defined on a perfectly normal space, Tong’s proof [14] that \(f \) is a pointwise limit of an increasing sequence of continuous functions is based on the Lebesgue set \(L_r(f) \) being a zero set; with trivial modification his proof yields this implication.

(iii)\(\Rightarrow \) (i) Let \(g \in U(X) \) and \(f \in L(X) \) with \(g \leq f \). If \(\{ f_n \} \) is an increasing sequence of continuous functions whose pointwise limit is \(f \) then for any real number \(r \) the Lebesgue set \(L_r(f) \) equals the intersection of the sequence \(\{ L_{r+1/n}(f_n) \} \) of zero sets, and thus \(L_r(f) \) is a zero set. Similarly, use a decreasing sequence \(\{ g_n \} \) of continuous functions whose pointwise limit is \(g \) to show that each \(L^*(g) \) is a zero set. For any rational numbers \(a < b \), \(L^*(g) \) and \(L_a(f) \) are disjoint zero sets and hence are completely separated; by Theorem 1 there is a continuous function \(k \) such that \(g \leq k \leq f \). Since the sequences \(\{ g_n \} \) and \(\{ f_n \} \) satisfy the conditions of Lemma 1, it follows that there exists \(h \) in \(C^*(X) \) such that \(g \leq h \leq f \) and whenever \(g(x) < f(x) \) then \(g(x) < h(x) \leq f(x) \). This concludes the proof of Theorem 2.

If \(k \) maps a space \(X \) into \(R \), call \(k \) regular lower semicontinuous (respectively, regular upper semicontinuous) if for each real number \(r \) the Lebesgue set \(L_r(k) \) (respectively, \(L^*(k) \)) is a regular \(G_\delta \) subset of \(X \). (These functions were considered in [9].) Let \(L(X) \) (respectively, \(U(X) \)) denote the class of bounded regular lower (respectively, upper) semicontinuous functions. The following is an immediate corollary of Theorem 2. If \(g \in U(X) \), \(f \in L(X) \), and \(g \leq f \) there is \(h \) in \(C^*(X) \) such that \(g \leq h \leq f \) and such that \(g(x) < h(x) < f(x) \) whenever \(g(x) < f(x) \) if and only if each regular \(G_\delta \) subset of \(X \) is a zero set. (If \(X \) is an Oz space [1] or if \(X \) is almost normal then each regular \(G_\delta \) subset of \(X \) is a zero set.)

PROOF OF THEOREM 3. (i)\(\Rightarrow \) (iii) If \(f \in L(X) \), \(g \in U(X) \) and \(g < f \) then by (i) there exists \(h \) in \(C^*(X) \) such that \(g < h < f \). Since \(C^*(X) \subset L(X) \cap U(X) \) we may use hypothesis (i) again to show there exist \(h_1 \) and \(h_2 \) in \(C^*(X) \) such that \(g < h_1 < h < h_2 < f \). For each \(r \) in \(Q \) let \(A_r = \{ x : h_2(x) < r \} \) and \(B_r = \{ x : h_1(x) > r \} \). In order to see that \(L_r(f) \) and \(X - A_r \) are completely separated, use (i) to choose \(k \).
in $C^*(X)$ such that $h_2 < k < f$. Since $X - A_r$ and $L_r(k)$ are disjoint zero sets and $L_r(k) \supset L_r(f)$ it follows that $L_r(f)$ and $X - A_r$ are completely separated. Similarly, $L^*(g)$ and $X - B_r$ are completely separated. The sets $X - (A_r \cup B_r)$, $r \in \mathbb{Q}$, cover X since $h_1 < h_2$. Thus (iii) is satisfied.

That (iii) implies (ii) is manifest; the argument to show (ii) implies (i) follows: Let $g \in U(X)$, $f \in L(X)$ and suppose that $-M < g < f < M$. It follows from (ii) that for any rational number r that $L_r(f)$ and $L^*(g)$ are completely separated; in particular for any rationals $a < b$ then $L_a(f)$ and $L^b(g)$ are completely separated. By Theorem 1 there is k in $C^*(X)$ such that $g < k < f$. For each rational number r choose sets A_r and B_r satisfying the conditions of (ii), and then choose a_r and b_r in $C^*(X)$ such that $-M \leq a_r \leq r$, $a_r = -M$ on $L_r(f)$, $a_r = r$ on $X - A_r$, $r \leq b_r \leq M$, $b_r = M$ on $L^*(g)$, and $b_r = r$ on $X - B_r$. If $x \in L_r(f)$ then $a_r(x) = -M < f(x)$ and if x is not in $L_r(f)$ then $f(x) > r \geq a_r(x)$; thus $a_r \leq f$. Let $x \in X$ and choose $s \in \mathbb{Q}$ such that x is $X - (A_s \cup L^s(g))$; since $x \in X - L^s(g)$ then $g(x) < s$ and since $x \in X - A_s$ then $a_s(x) = s$. Thus $\sup r a_r(x) \geq a_s(x) > g(x)$. Similarly, show that $g \leq b_r$ for each r and $\inf r b_r(x) < f(x)$ for each x. By Lemma 1 there exists h in $C^*(X)$ such that $g < h < f$. This concludes the proof of Theorem 3.

As one application of Theorem 3 consider the result of Dowker and Katetov mentioned above. Suppose that X is normal and countably paracompact, g is upper semicontinuous, f is lower semicontinuous and $g < f$. Since $\{X - (L_r(f) \cup L^*(g)) : r \in \mathbb{Q}\}$ is a countable open cover of X there is a cover $\{F_r : r \in \mathbb{Q}\}$ of X such that F_r is closed and $F_r \subset X - (L_r(f) \cup L^*(g))$ for each r. Since F_r and $L_r(f)$ are completely separated choose k_r in $C^*(X)$ such that $k_r = 0$ on $L_r(f)$, $k_r = 1$ on F_r, and let $A_r = \{x : k_r(x) < \frac{1}{2}\}$. Thus $L_r(f)$ and $X - A_r$ are completely separated. Similarly, define B_r so that $L^*(g)$ and $X - B_r$ are completely separated. Since $F_r \subset X - (A_r \cup B_r)$, $\{X - (A_r \cup B_r) : r \in \mathbb{Q}\}$ covers X. By Theorem 3 there is h in $C^*(X)$ such that $g < h < f$. This concludes the proof of Theorem 3.

REFERENCES

1. R. L. Blair, Spaces in which special sets are z-embedded, Canad. J. Math. 28 (1976), 673–690.

DEPARTMENT OF MATHEMATICS, APPALACHIAN STATE UNIVERSITY, BOONE, NORTH CAROLINA 28608