TRIVIALITY OF SIMPLE FIBER-PRESERVING ACTIONS OF TORI ON HILBERT-CUBE-FIBER BUNDLES

VO THANH LIEM

Abstract. Let \(\sigma \) denote the standard based-free action of a torus \(T \) on the Hilbert cube \(Q \). It will be shown that every simple fiber-preserving action of \(T \) on \(Q \times B \), where \(B \) is a finite-dimensional, compact metric absolute retract, is fiber-preserving equivalent to the diagonal action \(\sigma \times \operatorname{id}_B \).

1. Introduction and definitions. Let \(Q \) denote the Hilbert cube \(I_1 \times I_2 \times \cdots \), and let \(G \) be a topological group. An action \(\alpha: G \times M \to M \) of \(G \) on a topological space \(M \) is said to be semifree if, for each \(x \in M \), the isotropy group of \(x \) is either \(G \) or \{e\}. For a finite or compact Lie group \(G \), it is known that the metric cone of \(G \), \(\operatorname{cone}(G) \), is a compact absolute retract (AR). The left translation on \(G \) defines a natural semifree action of \(G \) on \(\operatorname{cone}(G) \) that induces a semifree action, the diagonal action of \(G \) on \(\prod_{n=1}^\infty \operatorname{cone}(G) \approx Q \) [We]. This action has a unique fixed point. Following [B-We], we call it the standard based-free action \(\sigma \) of \(G \) on \(Q \) whose orbit space is denoted by \(Q/\sigma \). An action \(\lambda \) of \(G \) on \(Q \times B \) is said to be fiber-preserving (f.p.) if, for each \(g \in G \), we have \(p_B \circ \lambda(g, \cdot) = p_B(\cdot) \), where \(p_B: Q \times B \to B \) is the projection. Two actions \(\alpha \) and \(\beta: G \times M \to M \) are said to be equivalent if there is a homeomorphism \(f: M \to M \) such that

\[
f(\alpha(g, x)) = \beta(g, f(x))
\]

for all \(x \in M \) and \(g \in G \). A f.p. action \(\lambda \) on \(Q \times B \) is said to be simple if the restriction of \(\lambda \) to each fiber \(Q \times \{b\} \) is equivalent to \(\sigma \) and has fixed point set \(\{(0, b)\} \).

In [L], the following result has been proved: "If \(B \) is a finite-dimensional compact metric AR, then every simple f.p. action of a finite group \(G \) on \(Q \times B \) is equivalent to the diagonal action \(\sigma \times \operatorname{id}_B \)."

The purpose of this paper is to establish a similar result for simple f.p. actions of tori on \(Q \times B \), where \(B \) is a finite-dimensional, compact metric AR, as stated in the abstract or Theorem 6 below.

In this paper, we set \(I = [0, 1] \), \(Q_0 = Q - \{0\} \). For basic notions and results in \(Q \)-manifold theory, we refer to [Ch]. A map \(p: X \to B \) is a Hurewicz fibration if \(p \) has the homotopy covering extension property (HCEP) with respect to every
Let \(p: X \to B \) be a Hurewicz fibration, where \(B \) is a f.d. compact AR and the fibers are \(Q \)-manifolds, then the composition \(p \circ p_X: X \times [0,1) \to X \to B \) is a locally trivial fiber bundle.

Given \(\alpha: G \times Q \times B \to Q \times B \) a simple f.p. action of \(G \) over \(B \), we will define \(E \) to be its orbit space and \(E_0 \) its regular orbit space \(E \setminus \{0\} \times B \) (we identify the fixed point set \(\{0\} \times B \) with its image in the orbit space). Let \(p: E \to B \) denote the natural map induced from the projection map \(p_B: Q \times B \to B \). The fiberwise-reduced cone \(C(E, p) \) of \(E \) over \(B \) is defined to be the quotient \((E \times \mathbb{I})/\mathcal{D} \), where \(\mathcal{D} \) is the decomposition of \(E \times \mathbb{I} \) whose nondegenerate elements are all closed subsets of the form \((p^{-1}(b) \times \{1\}) \cup (\partial_b \times \mathbb{I}) \) for \(b \in B \). Let \(d_1 \) denote a metric on \(C(E, p) \) which extends a metric, say \(d_1 \), in \(E \). Note that, besides being endowed with the metric \(d_1 \), the open subset \(E_0 \times [0,1) \) of \(C(E, p) \) also inherits the product metric \(d_2 \) of \(d_1 \) on \(E_0 \) and the usual metric on \([0,1) \). Given a \(\delta > 0 \), a \(\delta \)-subset of a metric space is a subset of diameter less than \(\delta \).

Observations. Let \(K \) be a compact subset of \(E_0 \) and let \(\varepsilon \) be a positive number. Then, there is a \(\delta > 0 \) such that every \(\delta \)-subset of \((E_0 \times [0,1), d_2) \) intersecting \(K \) is an \(\varepsilon \)-subset of \((E_0 \times [0,1), d_1) \). Consequently, if \(p: K \times \mathbb{I} \to C(E, p) \) is a \(\delta \)-homotopy (i.e. \(\text{diam}_2 p(x \times \mathbb{I}) < \delta \)) in \((E_0 \times [0,1), d_2) \) with \(p(x,0) = x \) for all \(x \) in \(K \), then \(\text{diam}_1 p(x \times \mathbb{I}) < \varepsilon \) in \((E_0 \times [0,1), d_1) \) for all \(x \) in \(K \). In particular, for the projection \(p_{E}: C(E, p) \to E \) and a \(\delta \)-subset \(A \) of \((E_0 \times [0,1), d_2) \) intersecting \(K \), then \(\text{diam}_1 p_{E}(A) < \varepsilon \) in \((E, d_1) \). Similar properties also hold true when \(d_1 \) and \(d_2 \) are interchanged.

Given an open cover \(\beta \) of a space \(Y \), a homomotopy \(H: X \times \mathbb{I} \to Y \) is said to be \(\beta \)-homotopy if for each \(x \in X \), the track \(H(x \times \mathbb{I}) \) is contained in a member of \(\beta \); a map \(f: X \to Y \) is said to be a \(\beta \)-equivalence if there is a map \(g: Y \to X \) such that \(f \circ g \) is \(\beta \)-homotopic to \(\text{id}_Y \) and \(g \circ f \) is \(f^{-1}(\beta) \)-homotopic to \(\text{id}_X \), where \(f^{-1}(\beta) \) denotes the open cover \(\{f^{-1}(U) \mid U \in \beta \} \) of \(X \).

2. Results and details of proofs. In the proof of the following proposition, we refer to p. 266 of [Do] for the definition of section extension property (SEP), numerable open covering, etc.

Proposition 1. If \(\lambda \) is a simple f.p. action of a finite group or a compact Lie group \(G \) on \(Q \times B \), then the natural map \(p: E_0 \to B \) is a Hurewicz fibration.

Proof. Since \(E_0 \) and \(B \) are metric spaces, we only have to show that \(p \) has the HCEP for the class of all metric spaces [Du, Corollary 2.3, p. 396]. Assume that \(X \) is a metric space. Given a commutative diagram

\[
\begin{array}{ccc}
X \times \{0\} & \xrightarrow{h} & E_0 \\
\downarrow & & \downarrow p \\
X \times \mathbb{I} & \xrightarrow{\phi} & B
\end{array}
\]
we will show that \(\phi \) has a lifting \(\Phi: X \times I \to E_0 \) with \(\Phi(x, 0) = h(x) \) for all \(x \) in \(X \). Equivalently, if we define

(1) \(R = \{ (x, w) \in X \times E_0' \mid w(0) = h(x) \text{ and } pw(t) = \phi(x, t) \} \), and

(2) \(q: R \to X \) by \(q(x, w) = x \),

then we will show that there is a numerable open cover \(\{ V_\lambda \mid \lambda \in \Lambda \} \) of \(X \) such that the restriction \(q_\lambda = q \mid q^{-1}(V_\lambda) : q^{-1}(V_\lambda) \to V_\lambda \) has SEP; hence, \(q \) has a cross-section by Theorem 2.7 of [Do].

Let \(\{ U_\lambda \mid \lambda \in \Lambda \} \) be a covering of \(E_0 \) consisting of contractible open subsets. Let \(V_\lambda = h^{-1}(U_\lambda), \lambda \in \Lambda \), then \(\{ V_\lambda \mid \lambda \in \Lambda \} \) is numerable since \(X \) is a metric space. Let \(\pi: Q_0 \times B \to E_0 \) denote the orbit map. Then, \(\pi \mid \pi^{-1}(U_\lambda) : \pi^{-1}(U_\lambda) \to U_\lambda \) is a trivial fiber bundle with fiber \(G \) [Br, Theorem 5.8, p. 88]; hence, there is a lifting \(\tilde{h}_\lambda: V_\lambda \times \{ 0 \} \to \pi^{-1}(U_\lambda) \subset Q_0 \times B \) of \(h_\lambda = h \mid (V_\lambda \times \{ 0 \}) \). Observe that the pair \((\phi_\lambda, \tilde{h}_\lambda)\), where \(\phi_\lambda = \phi \mid (V_\lambda \times I) \), has the HCEP; consequently, so does the pair \((\phi_\lambda, h_\lambda)\). Therefore, the map \(q_\lambda: q^{-1}(V_\lambda) \to V_\lambda \) has SEP by Lemma 4.5 of [Do]. So, the proof of the proposition is complete.

For the sake of simplicity, let \(F_h \) denote \(p^{-1}(b) \), \(X_h \) its reduced cone at \((0, b)\) and \(F_{h,b} \) the regular orbit space \(F_h \cap E_0 \) over \(b \) for each \(b \in B \); let \(Y_h \) denote \((Q_0/\sigma) \times \{ b \}\). Let \(d \) denote the product metric on \(Q_0/\sigma \times B \). Given \(b, c \in B \), let \(\epsilon_{h,c}: Y_h \to Y_b \) be the natural homeomorphism defined by \(\epsilon_{h,c}(x, b) = (x, c) \). Then \(d(\epsilon_{h,c}(x, b), (x, c)) = d_p(b, c) \) for each \((x, b) \in Y_h\).

From the above proposition and Lemma 0, it follows that the composition \(p \circ p_{E_0}: E_0 \times [0,1) \to B \) is a trivial fiber bundle whose fiber is homeomorphic to \((Q_0/\sigma) \times B \) [B-We]. Therefore, \(E_0 \times [0,1) \) is f.p. homeomorphic to \((Q_0/\sigma) \times B \) over \(B \). Consequently, its fiberwise-one-point compactification \(C(E, p) \) is f.p. homeomorphic to \((Q_0/\sigma) \times B \) over \(B \). Let \(h \) denote such a homeomorphism in the following Lemmas 2–5.

Lemma 2. Given an \(\epsilon > 0 \), there is a \(\delta > 0 \) such that if \(d_p(b, c) < \delta \), then \(d_i(h^{-1}\epsilon_{h,c}(h(x), x)) < \epsilon \) for all \(x \in X_h \) and \(d_i(h^{-1}\epsilon_{h,c}(h(z), z)) < \epsilon \) for all \(z \in X_c \).

Proof. From the uniform continuity of \(h^{-1} \), there is a \(\delta > 0 \) \((\delta < \epsilon)\) such that \(d(h^{-1}(y), h^{-1}(y')) < \epsilon \) for every pair of \(y, y' \in (Q_0/\sigma) \times B \) with \(d(y, y') < \delta \). Now, if \(d_p(b, c) < \delta \), then for each \(x \in X_h \) we have \(d_i(h_{h,c}(h(x), h(x)) = d_p(b, c) < \delta \); hence, \(d_i(h^{-1}\epsilon_{h,c}(h(x), x)) = d_i(h^{-1}\epsilon_{h,c}(h(x), h^{-1}(h(x))) < \epsilon \) as we desired. The proof of the second inequality is the same.

Lemma 3. Given an \(\epsilon > 0 \), there is a \(\delta \) \((0 < \delta < \epsilon)\) such that if \(d_p(b, c) < \delta \) and if \(A \) is a \(\epsilon \)-subset of \((X_h, d_i)\), then \(h^{-1}\epsilon_{h,c}(h(A)) \) is an \(\epsilon \)-subset of \((C(E, p), d_i)\).

Proof. From Lemma 1, choose a \(\delta < \epsilon/3 \) such that if \(d_p(b, c) < \delta \), then \(d_i(h^{-1}\epsilon_{h,c}(h(x), x)) < \epsilon/3 \) for each \(x \in X_h \). Then, for \(x, y \in X_h \) with \(d_i(x, y) < \delta \), we have
\[
d_i(h^{-1}\epsilon_{h,c}(h(y)), h^{-1}\epsilon_{h,c}(h(x))) \leq d_i(h^{-1}\epsilon_{h,c}(h(x), x) + d_i(x, y) + d_i(y, h^{-1}\epsilon_{h,c}(h(y))) < \epsilon.
\]
Lemma 4. Fix a point \(b \in B \) and a compact subset \(K \) of \(F_h - \{b\} \). Given an \(\varepsilon > 0 \), then there is a \(\delta > 0 \) such that if \(d_B(b, c) < \delta \), there are maps \(f : F_c \to F_h \) and \(g : F_h \to F_c \) having the following properties:

(a) \(d_1(f(x), x) < \varepsilon \) for all \(x \in f^{-1}(K) \), and \(d_1(g(y), y) < \varepsilon \) for all \(y \in K \).

(b) \(g \circ f \mid f^{-1}(K) \) is \(\varepsilon \)-homotopic to the inclusion \(f^{-1}(K) \subset F_c \).

(c) \(f \circ g \mid K \) is \(\varepsilon \)-homotopic to the inclusion \(K \subset F_h \).

Sublemma. Let \(M \) be a compact subset of \(E_0 \). Given an \(\varepsilon > 0 \), there is an \(\delta_1 < \varepsilon \) such that if \(d_B(b, c) < \delta_1 \) and if \(A \) is an \(\varepsilon_1 \)-subset of \((X_c, d_1) \) intersecting \(M \), then \(p_{E_0} h^{-1} \varepsilon_{c,b} h(A) \) is an \(\varepsilon \)-subset of \(F_c \).

Proof. Let \(\eta \) be a positive number such that the closure \(P \) of the \(\eta \)-neighborhood \(N_\eta(M) \) of \(M \) is a compact subset of \(E_0 \). Choose \(\mu_1 \) (\(0 < \mu_1 < \eta \)) such that \(\text{diam}_1 p_{E_0}(R) < \varepsilon \) for each \(\mu \)-subset \(R \) of \((P \times [0, \mu], d_1) \). Then, choose \(\varepsilon_1 (0 < \varepsilon_1 < \mu_1/2) \) such that if \(d_R(b, c) < \varepsilon_1 \), then

\[
(*) \quad \text{diam}(h^{-1} \varepsilon_{c,b} h(A)) < \mu_1/2 \quad \text{with respect to } d_1 \quad \text{and } d_2 \quad \text{for every } \varepsilon_1\text{-subset } A \quad \text{of} \quad (X_c, d_1) \quad \text{intersecting } M \quad \text{(see Lemma 3 and Observations)}, \quad \text{and} \quad

\[
(**) \quad d_1(h^{-1} \varepsilon_{c,b} h(x), x) < \mu_1/2 \quad \text{and} \quad d_2(h^{-1} \varepsilon_{c,b} h(x), x) < \mu_1/2 \quad \text{for every } x \in X_c \cap M \quad \text{(see Lemma 2 and Observations)}.

Now, if \(A \) is an \(\varepsilon_1 \)-subset of \((X_c, d_1) \) intersecting \(M \), then \(h^{-1} \varepsilon_{c,b} h(A) \) intersects \(N_{\mu_1/2}(M) \times [0, \mu_1/2] \) by (**). Combining this fact and (*), we observe that the set \(R = h^{-1} \varepsilon_{c,b} h(A) \) is a \(\mu_1 \)-subset of \((N_{\mu_1}(M) \times [0, \mu], d_1) \subset (P \times [0, \mu], d_1) \). Therefore, \(\text{diam}_1(p_{E_0} h^{-1} \varepsilon_{c,b} h(A)) < \varepsilon \) by the choice of \(\mu \).

Let us return to the proof of Lemma 4. Given an \(\varepsilon > 0 \), we will choose inductively the positive numbers \(\varepsilon > \varepsilon_1 > \delta_2 > \delta_1 > \delta_E > \delta \) as follows: We can assume that \(\varepsilon \) is so small that \(N_{\varepsilon}(K) \cap N_{\varepsilon}(B) = \emptyset \), and let \(M \) be the closure of \(N_{\varepsilon}(K) \).

(1) Choose \(\varepsilon_1 \), from the Sublemma, such that if \(H : Z \times I \to (E_0 \times [0, 1], d_1) \) is an \(\varepsilon_1 \)-homotopy with \(H(z \times I) \cap M \neq \emptyset \) and \(H(z \times I) \subset X_h \) for all \(z \in Z \), then \((p_{E_0} h^{-1} \varepsilon_{c,b} h) \circ H \) is an \(\varepsilon \)-homotopy in \((E, d_1) \) when \(d_B(b, c) < \varepsilon_1 \).

(2) Choose \(\delta_2 \) such that every \(\delta_2 \)-homotopy \(F : Z \times I \to (E_0 \times [0, 1], d_2) \) with \(F(z \times I) \cap M \neq \emptyset \) for all \(z \in Z \) is an \(\varepsilon_1 \)-homotopy in \((E_0 \times [0, 1], d_1) \) (from Observations).

(3) Choose \(\delta_1 \) such that every \(\delta_1 \)-subset of \((E_0 \times [0, 1], d_1) \) intersecting \(M \) is a \(\delta_2 \)-subset of \((E_0 \times [0, 1], d_2) \) (from Observations).

(4) Choose \(\delta_E \) such that if \(A \) is a \(\delta_E \)-subset of \((E_0 \times [0, 1], d_1) \) intersecting \(M \), then \(p_{E_0}(A) \) is a \(\delta_E \)-subset of \((E, d_1) \).

(5) Choose \(\delta \) such that if \(d_B(b, c) < \delta \), then \(d_1(h^{-1} \varepsilon_{c,b} h(x), x) < \delta_E \) for all \(x \in X_c \) and \(d_1(h^{-1} \varepsilon_{c,b} h(y), y) < \delta_E \) for all \(y \in X_h \) (from Lemma 2).

With this choice of \(\delta \), we now define \(f = p_{E_0} h^{-1} \varepsilon_{c,b} h \) and \(g = p_{E_0} h^{-1} \varepsilon_{b,c} h \) and show that \(f \) and \(g \) have all required properties if \(d_B(b, c) < \delta \).

(a) For \(x \in f^{-1}(K) \subset F_c \subset X_c \), then \(d_1(h^{-1} \varepsilon_{c,b} h(x), x) < \delta_E \) by (5); hence, \(d_1(p_{E_0} h^{-1} \varepsilon_{c,b} h(x), p_E(x)) < \delta_1/2 \) by (4); consequently, \(d_1(f(x), x) < \delta_1/2 < \varepsilon \).

Similarly, \(d_1(g(y), y) < \varepsilon \) for \(y \in K \subset F_h \).
(b) Observe that if \(x \in f^{-1}(K) \), then
\[
d_1(p_E^{-1}e_{c,b}h(x), h^{-1}e_{c,b}h(x)) = d_1(p_E^{-1}e_{c,b}h(x), x) + d_1(x, h^{-1}e_{c,b}h(x))
\]
\[
= d_1(f(x), x) + d_1(x, h^{-1}e_{c,b}h(x))
\]
\[
< \delta_1/2 + \delta_E < \delta_1
\]
(from the proof of (a) and by (5)). Hence, \(d_2(f(x), h^{-1}e_{c,b}h(x)) < \delta_2 \) by (3), since \(f(x) \in M \). Therefore, \(f \) is \(\delta_2 \)-homotopic along \([0,1)\) to \(h^{-1}e_{c,b}h \) in \((F_{b,0} \times [0,1), d_2) \subset X_b \), say \(H \). Consequently, \(H \) is an \(\epsilon \)-homotopy in \((X_b, d_1)\) by (2). Finally, \((p_E^{-1}e_{b,c}h) \circ H \) is an \(\epsilon \)-homotopy by (1) from \(g \circ f \) to
\[
p_E^{-1}e_{b,c}h_{h^{-1}e_{c,b}h} = p_E|f^{-1}(K) \subset F_c.
\]
(c) The proof of (c) is the same as that of (b).

The proof of Lemma 4 is now complete.

Lemma 5. Fix an element \(b \) of \(B \). Given an open cover \(\beta \) of \(F_b \) and an open subset \(U \) of \(F_b \) whose closure \(K \) is contained in \(F_{b,0} \), then there is a \(\delta > 0 \) such that, if \(c \in B \) with \(d_B(b, c) < \delta \), then there is a map \(f: F_c \to F_b \) which is a \(\beta \)-equivalence over \(U \).

Proof. Let \(\lambda \) be a positive number such that every \(\lambda \)-subset of \(F_b \) intersecting the compactum \(K \) is contained in a member of \(\beta \) meeting \(K \). Let \(\delta \) be a positive number from Lemma 4 corresponding to \(\epsilon = \lambda/4 \); and let \(f \) and \(g \) be two maps satisfying (a), (b) and (c) in Lemma 4.

Now, it is clear that \(f \circ g | K \) is \(\beta \)-homotopic to the inclusion \(K \subset F_{b,0} \) by (c). Moreover, there is a \((\lambda/4) \)-homotopy \(H \) from \(g \circ f | f^{-1}(K) \) to the inclusion \(f^{-1}(K) \subset F_{c,0} \) by (b); then \(f \circ H \) is a \((3\lambda/4) \)-homotopy by (a), and it is a \(\beta \)-homotopy since each tract intersects \(K \). Therefore, \(f \) is a \(\beta \)-equivalence over \(U \) as we desired.

Theorem 6. Let \(B \) be a finite-dimensional compact metric AR. If \(\lambda \) is a simple f.p. action of the torus \(T^n \) on \(Q \times B \), then (1) the map \(p: E \to B \) is a locally trivial fiber bundle, and (2) \(\lambda \) is f.p. equivalent to the diagonal action \(\sigma \times \text{id}_K \).

Proof. The proof will be similar to that of Theorem 3.2 in [L].

(1) Since the homeomorphism group \(\text{Homeo}(Q/\sigma) \) is locally contractible [L, Theorem 2.2], we will only have to show that the map \(p \) is completely regular; i.e. given an element \(b \in B \) and an \(\epsilon > 0 \), we will find a \(\delta > 0 \) such that, for each \(c \in B \) with \(d_B(b, c) < \delta \), there is a homeomorphism \(\phi: F_c \to F_b \) such that \(d_1(\phi(x), x) < \epsilon \) for each \(x \in F_c \).

Following [B-We], we will use the following notation in this proof. Let \(L_n \) denote the orbit space \((T \times T \times \cdots \times T)/\alpha\) of the induced diagonal action \(\alpha \) (from the left translation of \(T \) on itself) on the join of \(n \) copies of \(T \). Then, \(L_n \) is naturally embedded in \(L_{n+1} \), and let \(M_n \) denote the mapping cylinder
\[
\text{Map}(L_1 \to L_2 \to \cdots \to L_n).
\]

Define \(M_\infty = \bigcup_1^\infty M_n \). It is proved in [B-We] that \(F_b \) is homeomorphic to the one-point compactification of \(M_\infty \times Q \).
Given an $\epsilon > 0$, there is an integer m such that $F_b - (M_m \times Q)$ is contained in $N_{\epsilon/2}(0, b)$, the $(\epsilon/2)$-neighborhood of $(0, b)$. Let $\epsilon' (0 < \epsilon' < \epsilon/2)$ be chosen such that $M_{m+2} \times Q$ misses $N_{\epsilon'}(0, b)$.

Let β be an open cover of F_b as in Theorem 3.6 in [F] such that every β-equivalence $f: N \rightarrow F_{b,0}$ (N is a Q-manifold) over the interior of $M_{m+2} \times Q$ is $(\epsilon'/2)$-homotopic to a map $\tilde{f}: N \rightarrow F_{b,0}$ having the following properties:

(a) $\tilde{f} | f^{-1}(M_{m+1} \times Q)$ is an open embedding, and
(b) $f(x) = \tilde{f}(x)$ for all $x \in N - f^{-1}(M_{m+2} \times Q)$.

Now, choose $\delta (0 < \delta < \epsilon'/2)$ as in Lemma 5 corresponding to the open cover β and $U = \text{int} M_{m+2} \times Q$. Let b and c be in B with $d_{m}(b, c) < \delta$, and let $f: F_c \rightarrow F_b$ be a β-equivalence given by Lemma 5, and let \tilde{f} be as in the above paragraph. Observe that $\tilde{f}^{-1}(L_{m+1/2} \times Q)$ is bicollared in $F_{c,0}$ and it is contained in $N(0, c)$. Then, as in the proof of Theorem 3.2 in [L], since $F_{c,0}$ and $F_{b,0}$ are of the homotopy type of the Eilenberg-Mac Lane space $K(\mathbb{Z}, 2)$, we can extend $\tilde{f} | f^{-1}(M_{m+1/2} \times Q)$ to a homeomorphism $\phi: F_{c,0} \rightarrow F_{b,0}$, and finally from F_c onto F_b. Finally, it can be verified that $d(\phi(x), x) < \epsilon$ for all $x \in F_c$. Therefore, the proof of (1) is complete.

(2) By (1), we now identify E_0 with $(Q_0/\sigma) \times B$. Since the principal T-bundle $p_1: Q_0 \times B \rightarrow E_0 = (Q_0/\sigma) \times B$ is universal and B is contractible the action is classified by the projection map $E_0 = Q_0/\sigma \times B \rightarrow Q_0/\sigma \times \{b_0\}$ for any $b_0 \in B$ and is therefore equivalent to $\sigma \times \text{id}_B$ by a fiber-preserving, equivariant homeomorphism $g: Q_0 \times B \rightarrow Q_0 \times B$, which must extend to a homeomorphism of $Q \times B$.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ALABAMA, UNIVERSITY, ALABAMA 35486