Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Effective determination of the decomposition of the rational primes in a cubic field


Authors: Pascual Llorente and Enric Nart
Journal: Proc. Amer. Math. Soc. 87 (1983), 579-585
MSC: Primary 12A30; Secondary 12A50
DOI: https://doi.org/10.1090/S0002-9939-1983-0687621-6
MathSciNet review: 687621
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The decomposition of the rational primes in a cubic field $ K$ is determined in terms of the coefficients of a defining polynomial of $ K$. As a consequence, the discriminant $ D$ of $ K$ is straightforwardly computed and the cubic fields with index $ i(K) = 2$ are easily characterized.


References [Enhancements On Off] (What's this?)

  • [1] M. Bauer, Zur allgemeinen Theorie der algebraischen Grössen, J. Reine Angew. Math. 132 (1907), 21-32.
  • [2] R. Dedekind, Über den Zusammenhang zwischen der Theorie der Ideale und der höheren Kongruenzen, Abh. Kgl. Ges. Wiss. Göttingen 23 (1878), 1-23.
  • [3] B. N. Delone and D. K. Faddeev, The theory of irrationalities of the third degree, Transl. Math. Monographs, vol. 10, Amer. Math. Soc., Providence, R. I., 1964. MR 0160744 (28:3955)
  • [4] H. T. Engstrom, On the common index divisors of an algebraic field, Trans. Amer. Math. Soc. 32 (1930), 223-237. MR 1501535
  • [5] H. Hasse. Aritmetische Theorie der kubischen Zahlkörper auf klassenkörpertheoretischer Grundlage, Math. Z. 31 (1930), 565-582. MR 1545136
  • [6] J. Martinet and J. J. Payan, Sur les extensions cubiques non-Galoisiennes des rationnels et leur clôture Galoisienne, J. Reine Angew. Math. 228 (1967), 15-37. MR 0227137 (37:2722)
  • [7] W. Narkiewicz, Elementary and analytic theory of algebraic numbers, Monogr. Mat. 57 (1974). MR 0347767 (50:268)
  • [8] L. Tornheim, Minimal basis and inessential discriminant divisors for a cubic field, Pacific J. Math. 5 (1955), 623-631. MR 0073637 (17:463d)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 12A30, 12A50

Retrieve articles in all journals with MSC: 12A30, 12A50


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1983-0687621-6
Keywords: Cubic field, ramification, discriminant, index of a number field
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society