Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Numbers of solutions of congruences: Poincaré series for strongly nondegenerate forms


Author: Jay R. Goldman
Journal: Proc. Amer. Math. Soc. 87 (1983), 586-590
MSC: Primary 11T99; Secondary 11E45, 11E76
MathSciNet review: 687622
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ p$ be a fixed prime, $ f({x_1}, \ldots ,{x_k})$ a polynomial over $ {{\mathbf{Z}}_p}$, the $ p$-adic integers. $ {c_n}$ the number of solutions of $ f = 0$ over $ {\mathbf{Z}}/{p^n}{\mathbf{Z}}$ and $ {P_f}(t) = \sum\nolimits_{i = 0}^\infty {{c_i}{t^i}} $ the Poincaré series. A general approach to computing $ {c_n}$ and $ {P_f}(t)$ is given and explicit formulas are derived for strongly nondegenerate forms.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11T99, 11E45, 11E76

Retrieve articles in all journals with MSC: 11T99, 11E45, 11E76


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1983-0687622-8
PII: S 0002-9939(1983)0687622-8
Article copyright: © Copyright 1983 American Mathematical Society