Conservative and divergence free algebraic vector fields

Authors:
E. Connell and J. Drost

Journal:
Proc. Amer. Math. Soc. **87** (1983), 607-612

MSC:
Primary 13F20; Secondary 13B10, 13N05

DOI:
https://doi.org/10.1090/S0002-9939-1983-0687626-5

MathSciNet review:
687626

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Suppose is a field of characteristic 0 and . If , for , , , the are relatively prime, and each is conservative, then is conservative and is unimodular. Given any with , then each derivation , has divergence 0. If is a -derivation with kernel of dimension - , then there exists a so that has divergence 0.

**[AHE]**S. S. Abhyankar, W. Heinzer and P. Eakin,*On the uniqueness of the coefficient ring in a polynomial ring*, I. Algebra**23**(1972) 310-342. MR**0306173 (46:5300)****[BCW]**H. Bass. E. Connell and D. Wright,*The Jacobian Conjecture: Reduction of degree and formal expansion of the inverse*, Bull. Amer. Math. Soc. (N.S.)**7**(1982), 287-330. MR**663785 (83k:14028)****[GR]**R. C. Gunning and H. Rossi,*Analytic function of several complex variables*, Prentice-Hall, Englewood Cliffs, N. J., 1965. MR**0180696 (31:4927)****[M]**H. Matsumura,*Commutative algebra*, Benjamin, New York, 1970. MR**0266911 (42:1813)****[S]**H. M. Schey, Div, Grad, Curl,*and all that*, Norton, 1973.**[Wa]**S. Wang,*A Jacobian criterion for separability*, J. Algebra**65**(1980), 453-494. MR**585736 (83e:14010)****[Wr]**D. Wright,*On the Jacobian Conjecture*, Illinois J. Math.**25**(1981), 423-440. MR**620428 (83a:12032)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
13F20,
13B10,
13N05

Retrieve articles in all journals with MSC: 13F20, 13B10, 13N05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1983-0687626-5

Article copyright:
© Copyright 1983
American Mathematical Society