FOURIER COEFFICIENTS OF CONTINUOUS FUNCTIONS ON COMPACT GROUPS

BARBARA HEIMAN

Abstract. Let G be an infinite compact group with dual object Σ. Letting ℌσ be the representation space for σ ∈ Σ, ℌ2(Σ) is the set \(\{ A = (A^σ) ∈ \prod \mathcal{B}(\mathcal{H}_σ) : \| A \|_2 = \sum_σ d_σ \text{Tr}(A^σA^{σ'}) < ∞\} \). For \(A ∈ ℌ^2(Σ) \), we show that there is a function \(f \) in \(C(G) \) such that \(\| f \|_∞ ≤ C \| A \|_2 \) and \(\text{Tr}(f(σ)f(σ)^*) ≥ \text{Tr}(A^σA^{σ'}) \) for every \(σ ∈ Σ \).

In a 1977 paper [3], K. de Leeuw, Y. Katznelson and J.-P. Kahane proved that every square summable sequence is dominated by the sequence of Fourier coefficients of a continuous function on the circle group, \(T \). As the authors mentioned, this result is true, with the same proof, for any compact abelian group in the role of \(T \) and its dual group in place of the integers, \(Z \). This paper answers the same question for a compact nonabelian group. Using appropriate tools, our proof parallels that of [3]. All notation and terminology used here without explicit definition is as in [2].

Let \(G \) be an infinite compact group with dual object Σ. For each \(σ ∈ Σ \), let \(U^σ \) be a representation in \(σ \) and let \(\mathcal{H}_σ \), its representation space, have dimension \(d_σ \). If \(\mathcal{B}(\mathcal{H}_σ) \) is the space of operators on \(\mathcal{H}_σ \), define \(\| \cdot \|_2 \) on \(\mathcal{B}(\mathcal{H}_σ) \) by \(\| A^σ \|_2 = \text{Tr}(A^σA^{σ'})^{1/2} \). Let \(ℌ(Σ) = \prod_σ \mathcal{B}(\mathcal{H}_σ) \) and let \(ℌ^2(Σ) \) be the set of \(A = (A^σ) ∈ ℌ(Σ) \) satisfying

\[\| A \|_2 = \left(\sum_σ d_σ \| A^σ \|_2^2 \right)^{1/2} < ∞. \]

Finally, \(\Gamma \) will designate the compact group \(\prod_σ \mathcal{U}(d_σ) \), where \(\mathcal{U}(d_σ) \) is the group of all unitary operators on \(\mathcal{H}_σ \).

We make use of the following results.

1. Let \(f(V) = \sum_σ d_σ \text{Tr}(B^σV^σ) \) \((V ∈ Γ) \) be a finite sum. Then

\[\int_Γ |\exp(f(V))|dV ≤ \exp(\| B \|_2^2). \]

This statement and its proof are similar to [4, Lemma 2].

2. Suppose \(A ∈ ℌ^2(Σ) \). Then, for almost all \(V ∈ Γ \),

\[\sum_σ d_σ \text{Tr}(A^σV^σU^σ(x)) \]

converges for almost every \(x ∈ G \) [4, Lemma 8].

Received by the editors May 24, 1982.
1980 Mathematics Subject Classification. Primary 43A30, 43A77, 60B15.
Lemma 1. Suppose \(A \in \mathcal{S}^2(\Sigma) \). For every \(V \in \Gamma \), let \(f_V \) be the function in \(L^2(G) \) whose Fourier series is
\[
\sum_\sigma d_\sigma \text{Tr}(A^\sigma V^\sigma U^\sigma(x)).
\]
Let \(\lambda > 0 \). Then the set
\[
E = \left\{ V \in \Gamma : \int_G \exp(\lambda|f_V(x)|)dx \leq 2 \exp\left(4\lambda^2\|A\|_2^2\right) \right\}
\]
has positive \(\Gamma \)-measure.

Proof. Let \(x \in G \) be fixed but arbitrary. Let \(S_n f_V \) be the \(n \)th partial sum of \(f_V \) and \(S_n \), that of \(\|A\|_2^2 \). (These partial sums are relative to some arbitrary and fixed enumeration of the set \(\{ \sigma \in \Sigma : A^\sigma \neq 0 \} \).)

Using the inequality \(\exp|z| \leq \sum_{k=1}^\infty \frac{|z|^k}{k!} \) the invariance of the Haar integral on \(\Gamma \) and (1),
\[
\int_\Gamma \exp(\lambda|S_n f_V(x)|)dV \leq 2 \exp(4\lambda^2 S_n^2).
\]
As \(x \in G \) was arbitrary,
\[
\int_\Gamma \int_G \exp(\lambda|S_n f_V(x)|)dV dx \leq 2 \exp(4\lambda^2 S_n^2).
\]
By Fubini's theorem, the order of integration can be reversed. Applying (2) and Fatou's lemma,
\[
\int_\Gamma \int_G \exp(\lambda|f_V(x)|)dx dV \leq 2 \exp(4\lambda^2\|A\|_2^2).
\]
Consequently, \(E \) has positive \(\Gamma \)-measure.

Lemma 2. Suppose \(B \in \mathcal{S}^2(\Sigma) \). Let \(\varepsilon, \eta > 0 \) be given and suppose that \(\|B\|_2 \leq \varepsilon \).
Then there is a choice of \(V \in \Gamma \) such that the function \(h \in L^2(G) \), whose Fourier series is \(\sum_\sigma d_\sigma \text{Tr}(B^\sigma V^\sigma U^\sigma(x)) \), satisfies
\[
\left\| \left(|h| - \eta \right)^+ \right\|_2 \leq 16 \sqrt{2} e^{-\frac{\eta^2}{8\varepsilon^2}} \exp\left(\frac{-\eta^2}{32\varepsilon^2}\right).
\]

Proof. Let \(\lambda = \eta/8\varepsilon^2 \). Invoke Lemma 1 to obtain \(V \in \Gamma \) so that
\[
\int_G \exp(\lambda|h(x)|)dx \leq 2 \exp(4\lambda^2\|B\|_2^2) \leq 2 \exp\left(\frac{\eta^2}{16\varepsilon^2}\right).
\]
Since
\[
\sup_{t \geq \eta} (t - \eta)^2 \exp(-\lambda t) = 256 e^{-2\varepsilon^2} \eta^{-2} \exp\left(\frac{-\eta^2}{8\varepsilon^2}\right).
\]

\[
\left\| \left(|h| - \eta \right)^+ \right\|_2 \leq 256 e^{-2\varepsilon^2} \eta^{-2} \exp\left(\frac{-\eta^2}{8\varepsilon^2}\right) \int_G \exp(\lambda|h(x)|)dx
\leq 512 e^{-2\varepsilon^2} \eta^{-2} \exp\left(\frac{-\eta^2}{16\varepsilon^2}\right).
\]
Lemma 3. Suppose $A \in \mathcal{D}^2(\Sigma)$. There exists a function $f \in L^\infty(G)$ with $\|f\|_\infty \leq 36\|A\|_2$, and $\|f(\sigma)\|_2 \geq \|A^\sigma\|_2$ for every $\sigma \in \Sigma$.

Proof. Assume that $\|A\|_2 = 1$. Define sequences $(\delta_j)_{j=1}^\infty$, $(\eta_j)_{j=0}^\infty$, and $(\varepsilon_j)_{j=0}^\infty$ by

\[\delta_j = 3^{-j}; \quad \eta_j = 36\delta_j; \quad \varepsilon_0 = 1 \]

and

\[\varepsilon_{j+1} = 32\sqrt{2}(1 - \delta_j) e^{-1} \varepsilon_j^2 \eta_{j+1}^{-1} \delta_j^{-1} \exp \left(\frac{-\eta_{j+1}^2}{32\varepsilon_j^2} \right) \quad \text{for } j \geq 0. \]

One checks by induction that $\varepsilon_j \leq 6^{-j}$ for $j \geq 0$. Let $s_0 = 0$ and $s_k = \sum_{j=1}^k \delta_j$.

We next define sequences of functions $(f_j)_{j=0}^\infty$, $(g_j)_{j=0}^\infty$, and $(h_j)_{j=0}^\infty$ with $f_j = g_j + h_j$, which satisfy

(a) $\|g_j\|_\infty \leq 36s_j$;
(b) $\|h_j\|_2 \leq \varepsilon_j$;
(c) $\left\| \left(|h_j| - \eta_{j+1} \right)^+ \right\|_2 \leq \rho_j = 16\sqrt{2} e^{-1} \varepsilon_j^2 \eta_{j+1}^4 \exp \left(\frac{-\eta_{j+1}^2}{32\varepsilon_j^2} \right)$;
(d) $\left\| \hat{f}_j(\sigma) \right\|_2 \geq (1 - s_j)\|A^\sigma\|_2$ for $\sigma \in \Sigma$.

Let $g_0 = 0$ and choose h_0 to satisfy the conclusion of Lemma 2 with $B = A$, $\varepsilon = \varepsilon_0$ and $\eta = \eta_1$. Then (a)–(d) are true for $j = 0$.

Suppose that $k \geq 1$ and that g_{k-1} and h_{k-1} have been selected to satisfy (a)–(d) when $j = k - 1$. Define

\[g_k(x) = \begin{cases} 36s_k \text{sgn} f_{k-1}(x) & \text{if } |f_{k-1}(x)| > 36s_k, \\ f_{k-1}(x) & \text{if } |f_{k-1}(x)| \leq 36s_k. \end{cases} \]

Then (a) holds for $j = k$. Note that if $|f_{k-1}(x)| > 36s_k$, then

\[|f_{k-1}(x) - g_k(x)| = |f_{k-1}(x)| - 36s_k \leq |g_{k-1}(x)| - 36s_{k-1} + |h_{k-1}(x)| - \eta_k \leq (|h_{k-1}(x)| - \eta_k)^+. \]

Thus $\|f_{k-1} - g_k\|_2 \leq \rho_{k-1}$. Let

\[\Phi = \{ \sigma \in \Sigma: \|\hat{g}_k(\sigma)\|_2 < (1 - s_k)\|A^\sigma\|_2 \}. \]

For $\sigma \in \Phi$, we have $\|\hat{f}_{k-1}(\sigma) - \hat{g}_k(\sigma)\|_2 \geq \delta_k \|A^\sigma\|_2$. Define $B^\sigma \in \mathcal{D}^2(\Sigma)$ by

\[B^\sigma = \begin{cases} 2(1 - s_k)A^\sigma & \text{for } \sigma \in \Phi, \\ 0 & \text{otherwise}. \end{cases} \]
Then,
\[\| B \|_2^2 = \sum_{\sigma \in \Phi} d_\sigma A(1 - s_\sigma)^2 \| A^\sigma \|_2^2 \]
\[\leq 4(1 - s_\sigma)^2 \| f_{k - 1} - g_k \|_2^2 \]
\[\leq 4(1 - \delta_\sigma)^2 \| \rho_{k - 1}^2 \| = \epsilon_k^2. \]
Thus a function \(h_k \) can be chosen via Lemma 2 applied to \(B, \epsilon = \epsilon_k \) and \(\eta = \eta_k + 1 \) which satisfies both (b) and (c). Finally, if \(\sigma \in \Phi \),
\[\| f_\sigma \|_2 = \| g_\sigma \|_2 \geq (1 - s_\sigma) \| A^\sigma \|_2, \]
while if \(\sigma \notin \Phi \),
\[\| f_\sigma \|_2 \geq \| B^\sigma \|_2 - \| g_\sigma \|_2 \geq (1 - s_\sigma) \| A^\sigma \|_2. \]
Therefore (d) holds for \(j = k \). This completes the definition of these sequences of functions.

For \(j \geq 1 \),
\[\| f_{j - 1} - f_j \|_2 \leq \| f_{j - 1} - g_j \|_2 + \| h_j \|_2 < 2(6^{-j}). \]
so there is a function \(f \in L^2(G) \) such that \(\lim_{j \to \infty} \| 2f_j - f \|_2 = 0 \). Since \(\| 2g_j - f \|_2 \leq \| 2f - f \|_2 + 2\| h \|_2 \),
\[\lim_{j \to \infty} \| 2g_j - f \|_2 = 0. \]
Thus a subsequence of \((2g_j)_{j=0}^\infty \) converges to \(f \) pointwise almost everywhere on \(G \).

Hence
\[\| f \|_\infty \leq 2 \lim_{j \to \infty} \| g_j \|_\infty \leq 36 \]
and, for each \(\sigma \in \Sigma \),
\[\| \hat{f}(\sigma) \|_2 \geq 2 \lim_{j \to \infty} (1 - s_j) \| A^\sigma \|_2 = \| A^\sigma \|_2. \]
This verifies the lemma.

We are now able to state and prove the main result, which replaces \(L^\infty(G) \) in Lemma 3 by \(C(G) \).

Theorem. Suppose \(A \in D^2(\Sigma) \). There exists a function \(f \in C(G) \) with \(\| f \|_\infty \leq 37 \| A \|_2 \) and \(\| \hat{f}(\sigma) \|_2 \geq \| A^\sigma \|_2 \) for every \(\sigma \in \Sigma \).

Proof. Let \(\delta = \| A \|_2/36 \). Assume \(\delta > 0 \). Let \(h \in L^2(G) \) have Fourier series
\[\sum_{\sigma} d_\sigma \text{Tr}(A^\sigma U^\sigma(X)). \]
By a factorization theorem, there exist functions \(g \in L^2(G) \) and \(k \in L^1(G) \) such that
\[h = k \ast g; \]
\(k \) is nonnegative and central in \(L^1(G) \);
\[\| k \|_1 = 1; \]
\[\| h - g \|_2 < \delta. \]
(See [2, (32.31)], replacing \(C(G) \) by \(L^2(G) \).)
Invoke Lemma 3 to obtain a function \(f_\infty \in L^\infty(G) \) which satisfies \(\|f_\infty\|_\infty \leq 36\|g\|_2 \) and \(\|\hat{f}_\infty(\sigma)\|_2 \geq \|\hat{g}(\sigma)\|_2 \) for every \(\sigma \in \Sigma \). Let \(f = k \cdot f_\infty \in L^1(G) \ast L^\infty(G) = C(G) \). Then

\[
\|f\|_\infty \leq \|k\|_1 \|f_\infty\|_\infty \leq 36\|g\|_2 \leq 36(\|h\|_2 + \delta) = 37\|A\|_2.
\]

Since \(k \) is central in \(L^1(G) \), \(\hat{k}(\sigma) \) is seen to be a scalar multiple of the identity in \(\mathcal{B}(\mathcal{K}_\sigma) \). Write \(\hat{k}(\sigma) = c_\sigma \mathbf{I}_\sigma \). Then

\[
\|\hat{f}(\sigma)\|_2 = |c_\sigma| \|\hat{f}_\infty(\sigma)\|_2 \geq |c_\sigma| \|\hat{g}(\sigma)\|_2 = \|A^\sigma\|_2.
\]

A corollary of our theorem is a generalization of Carleman's theorem for the circle [1]. (See also [2, 37.22(k)] for another proof of this corollary.) For the statement of this corollary, some additional notation is necessary. Let \(A \in \mathcal{B}(\mathcal{K}_\sigma) \) and let \(|A| \) be the (unique) positive-definite square root of \(AA^* \). Let \(\lambda_1, \ldots, \lambda_d \) be the eigenvalues of \(|A| \). Define the von Neumann norms on \(\mathcal{B}(\mathcal{K}_\sigma) \) by

\[
\|A\|_{\phi, r} = \left(\sum_i (\lambda_i)^r \right)^{1/r} \quad (1 \leq r < \infty).
\]

(Note that \(\|\|_{\phi, r} \) is the same as \(\|\|_{2, \phi} \).

For \(A = (A^\sigma) \in \mathcal{E}(\Sigma) \), define

\[
\|A\|_p = \left(\sum_\sigma d_\sigma \|A^\sigma\|_{\phi, r}^p \right)^{1/p} \quad (1 \leq r < \infty).
\]

Let \(\mathcal{E}^p(\Sigma) = \{ A \in \mathcal{E}(\Sigma) : \|A\|_p < \infty \} \).

Corollary. There is a continuous function \(f \) defined on \(G \) for which \(\hat{f} \notin \mathcal{E}^{2,p}(\Sigma) \) for \(1 \leq p < 2 \).

Proof. Let \(\{\sigma_1, \sigma_2, \sigma_3, \ldots\} \) be a countably infinite subset of \(\Sigma \), with no repetitions. Let \(A_n^\sigma \) be the \(d_{\sigma_1} \times d_{\sigma_2} \)-matrix whose (1, 1)-entry is \(1/\sqrt{n d_{\sigma_2}} \log n \) and whose other entries are zero. Let \(A^\sigma = 0 \) for all other \(\sigma \in \Sigma \). Then \(A \in \mathcal{E}^{2,2}(\Sigma) \).

By the preceding theorem, there exists a function \(f \in C(G) \) with

\[
\|\hat{f}(\sigma)\|_2 \geq \|A^\sigma\|_2 \quad \text{for every } \sigma \in \Sigma.
\]

For every \(\sigma \in \Sigma \),

\[
\|\hat{f}(\sigma)\|_{\phi, r} \geq \|\hat{f}(\sigma)\|_2 \geq \|A^\sigma\|_2 = \|A^\sigma\|_{\phi, r}.
\]

Since

\[
d_{\sigma_n} \|A^\sigma\|_{\phi, r} = d_{\sigma_n} \left(\frac{1}{\sqrt{n d_{\sigma_n}} \log n} \right)^r \geq \frac{1}{n \log n}
\]

for all sufficiently large \(n \), \(\hat{f} \notin \mathcal{E}^{2,p}(\Sigma) \).

Acknowledgements. An earlier version of this paper was written while the author was a graduate student at Kansas State University. I am grateful to the mathematics department there for their support and encouragement. Special thanks are due Karl Stromberg for his guidance. I would also like to thank Edwin Hewitt for his valuable suggestions.
REFERENCES

DEPARTMENT OF MATHEMATICAL SCIENCES, THE COLLEGE OF WOOSTER, WOOSTER, OHIO 44691