Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Fourier coefficients of continuous functions on compact groups


Author: Barbara Heiman
Journal: Proc. Amer. Math. Soc. 87 (1983), 685-690
MSC: Primary 43A77
DOI: https://doi.org/10.1090/S0002-9939-1983-0687642-3
MathSciNet review: 687642
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be an infinite compact group with dual object $ \Sigma $. Letting $ {\mathcal{K}_\sigma }$ be the representation space for $ \sigma \in \Sigma $, $ {\mathcal{E}^2}(\Sigma )$ is the set $ \{ A = ({A^\sigma }) \in \Pi \mathcal{B}({\mathcal{K}_\sigma }):\left\Vert A \... ... _\sigma }{d_\sigma }\operatorname{Tr} ({A^\sigma }{A^{\sigma *}}) < \infty \} $. For $ A \in {\mathcal{E}^2}(\Sigma )$, we show that there is a function $ f$ in $ C(G)$ such that $ {\left\Vert f \right\Vert _\infty } \leqslant C{\left\Vert A \right\Vert _2}$ and $ \operatorname{Tr} (\hat f(\sigma )\hat f{(\sigma )^*}) \geqslant \operatorname{Tr} ({A^\sigma }{A^{\sigma *}})$ for every $ \sigma \in \Sigma $.


References [Enhancements On Off] (What's this?)

  • [1] T. Carleman, Über die Fourierkoeffizienten einer stetigen Funktion, Acta Math. 41 (1918), 377-384. MR 1555157
  • [2] E. Hewitt and K. A. Ross, Abstract harmonic analysis. II, Grundlehren. Math. Wiss. No. 152, Springer-Verlag, Berlin, Heidelberg and New York, 1970. MR 0262773 (41:7378)
  • [3] K. de Leeuw, Y. Katznelson and J.-P. Kahane, Sur les coefficients de Fourier des fonctions continues, C. R. Acad. Sci. Paris Sér. A. 285 (1977), 1001-1003. MR 0510870 (58:23319)
  • [4] D. Rider, Random fourier series, Symposia Mathematica No. 22, Academic Press, New York, 1977, pp. 93-106. MR 0487229 (58:6886)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 43A77

Retrieve articles in all journals with MSC: 43A77


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1983-0687642-3
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society