One-to-one operators on function spaces

Author:
Stephen T. L. Choy

Journal:
Proc. Amer. Math. Soc. **87** (1983), 691-694

MSC:
Primary 47B38; Secondary 46G10

MathSciNet review:
687643

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For a Banach algebra one-to-one operators with closed range on are characterized in terms of the associated vector measures given by the Riesz Representation Theorems. Multiplicatively symmetric operators are also studied.

**[1]**R. G. Bartle,*A general bilinear vector integral*, Studia Math.**15**(1956), 337–352. MR**0080721****[2]**Russell Bilyeu and Paul Lewis,*Some mapping properties of representing measures*, Ann. Mat. Pura Appl. (4)**109**(1976), 273–287. MR**0425609****[3]**Jürgen Batt and E. Jeffrey Berg,*Linear bounded transformations on the space of continuous functions.*, J. Functional analysis**4**(1969), 215–239. MR**0248546****[4]**J. K. Brooks and P. W. Lewis,*Linear operators and vector measures*, Trans. Amer. Math. Soc.**192**(1974), 139–162. MR**0338821**, 10.1090/S0002-9947-1974-0338821-5**[5]**Stephen T. L. Choy,*Integral representation of multiplicative, involution preserving operators in 𝔏(ℭ₀(𝔖,𝔄),𝔅)*, Proc. Amer. Math. Soc.**83**(1981), no. 1, 54–58. MR**619980**, 10.1090/S0002-9939-1981-0619980-2**[6]**J. G. Dhombres,*A functional characterization of Markovian linear exaves*, Bull. Amer. Math. Soc.**81**(1975), 703–706. MR**0377580**, 10.1090/S0002-9904-1975-13828-6**[7]**Ivan Dobrakov,*On representation of linear operators on 𝐶₀(𝑇,𝑋)*, Czechoslovak Math. J.**21 (96)**(1971), 13–30. MR**0276804****[8]**J. Duncan and S. A. R. Hosseiniun,*The second dual of a Banach algebra*, Proc. Roy. Soc. Edinburgh Sect. A**84**(1979), no. 3-4, 309–325. MR**559675**, 10.1017/S0308210500017170**[9]**Gerald W. Johnson,*Integral representation of multiplicative, involution preserving operators in ℒ(𝒞(𝒮),ℰ)*, Proc. Amer. Math. Soc.**23**(1969), 373–377. MR**0253052**, 10.1090/S0002-9939-1969-0253052-9**[10]**Walter Rudin,*Functional analysis*, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. McGraw-Hill Series in Higher Mathematics. MR**0365062**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
47B38,
46G10

Retrieve articles in all journals with MSC: 47B38, 46G10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1983-0687643-5

Keywords:
Vector-valued measures,
representing measures,
one-to-one operators,
multiplicatively symmetric operators,
weakly compact operators,
Arens product

Article copyright:
© Copyright 1983
American Mathematical Society