Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

One-to-one operators on function spaces


Author: Stephen T. L. Choy
Journal: Proc. Amer. Math. Soc. 87 (1983), 691-694
MSC: Primary 47B38; Secondary 46G10
DOI: https://doi.org/10.1090/S0002-9939-1983-0687643-5
MathSciNet review: 687643
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a Banach algebra $ A$ one-to-one operators with closed range on $ {C_0}(S,A)$ are characterized in terms of the associated vector measures given by the Riesz Representation Theorems. Multiplicatively symmetric operators are also studied.


References [Enhancements On Off] (What's this?)

  • [1] R. G. Bartle, A general bilinear integral, Studia Math. 15 (1956), 337-352. MR 0080721 (18:289a)
  • [2] R. Bilyeu and P. Lewis, Some mapping properties of representing measures, Ann. Mat. Pura Appl. 109 (1976), 273-287. MR 0425609 (54:13563)
  • [3] J. Batt and E. J. Berg, Linear bounded transformations on the space of continuous functions, J. Functional Analysis 4 (1969), 215-239. MR 0248546 (40:1798)
  • [4] J. K. Brooks and P. W. Lewis, Linear operators and vector measures, Trans. Amer. Math. Soc. 192 (1974), 139-162. MR 0338821 (49:3585)
  • [5] S. T. L. Choy, Integral representation of multiplicative, involution preserving operators in $ \mathcal{L}({C_0}(S,A),B)$, Proc. Amer. Math. Soc. 83 (1981), 54-58. MR 619980 (83b:46076)
  • [6] J. G. Dhombres, A functional characterization of markovian linear exaves, Bull. Amer. Math. Soc. 81 (1975), 703-706. MR 0377580 (51:13751)
  • [7] I. Dobrakov, On representation of linear operators on $ {C_0}(T,X)$, Czechoslovak Math. J. 21 (1971), 13-30. MR 0276804 (43:2544)
  • [8] J. Duncan and S. A. R. Hosseiniun, The second dual of a Banach algebra, Proc. Roy. Soc. Edinburgh Sect. A 84 (1979), 309-325. MR 559675 (81f:46057)
  • [9] G. W. Johnson, Integral representation of multiplicative, involution preserving operators in $ \mathcal{L}(C(S),E)$, Proc. Amer. Math. Soc. 23 (1969), 373-377. MR 0253052 (40:6267)
  • [10] W. Rudin, Functional analysis, McGraw-Hill, New York, 1973. MR 0365062 (51:1315)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47B38, 46G10

Retrieve articles in all journals with MSC: 47B38, 46G10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1983-0687643-5
Keywords: Vector-valued measures, representing measures, one-to-one operators, multiplicatively symmetric operators, weakly compact operators, Arens product
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society