One-to-one operators on function spaces

Author:
Stephen T. L. Choy

Journal:
Proc. Amer. Math. Soc. **87** (1983), 691-694

MSC:
Primary 47B38; Secondary 46G10

DOI:
https://doi.org/10.1090/S0002-9939-1983-0687643-5

MathSciNet review:
687643

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a Banach algebra one-to-one operators with closed range on are characterized in terms of the associated vector measures given by the Riesz Representation Theorems. Multiplicatively symmetric operators are also studied.

**[1]**R. G. Bartle,*A general bilinear integral*, Studia Math.**15**(1956), 337-352. MR**0080721 (18:289a)****[2]**R. Bilyeu and P. Lewis,*Some mapping properties of representing measures*, Ann. Mat. Pura Appl.**109**(1976), 273-287. MR**0425609 (54:13563)****[3]**J. Batt and E. J. Berg,*Linear bounded transformations on the space of continuous functions*, J. Functional Analysis**4**(1969), 215-239. MR**0248546 (40:1798)****[4]**J. K. Brooks and P. W. Lewis,*Linear operators and vector measures*, Trans. Amer. Math. Soc.**192**(1974), 139-162. MR**0338821 (49:3585)****[5]**S. T. L. Choy,*Integral representation of multiplicative, involution preserving operators in*, Proc. Amer. Math. Soc.**83**(1981), 54-58. MR**619980 (83b:46076)****[6]**J. G. Dhombres,*A functional characterization of markovian linear exaves*, Bull. Amer. Math. Soc.**81**(1975), 703-706. MR**0377580 (51:13751)****[7]**I. Dobrakov,*On representation of linear operators on*, Czechoslovak Math. J.**21**(1971), 13-30. MR**0276804 (43:2544)****[8]**J. Duncan and S. A. R. Hosseiniun,*The second dual of a Banach algebra*, Proc. Roy. Soc. Edinburgh Sect. A**84**(1979), 309-325. MR**559675 (81f:46057)****[9]**G. W. Johnson,*Integral representation of multiplicative, involution preserving operators in*, Proc. Amer. Math. Soc.**23**(1969), 373-377. MR**0253052 (40:6267)****[10]**W. Rudin,*Functional analysis*, McGraw-Hill, New York, 1973. MR**0365062 (51:1315)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
47B38,
46G10

Retrieve articles in all journals with MSC: 47B38, 46G10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1983-0687643-5

Keywords:
Vector-valued measures,
representing measures,
one-to-one operators,
multiplicatively symmetric operators,
weakly compact operators,
Arens product

Article copyright:
© Copyright 1983
American Mathematical Society