Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

$ \aleph \sb{0}$-categorical distributive lattices of finite breadth


Author: James H. Schmerl
Journal: Proc. Amer. Math. Soc. 87 (1983), 707-713
MSC: Primary 03C35; Secondary 03C15, 03C65, 06D05
DOI: https://doi.org/10.1090/S0002-9939-1983-0687647-2
MathSciNet review: 687647
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Every $ {\aleph _0}$-categorical distributive lattice of finite breadth has a finitely axiomatizable theory. This result extends the analogous result for partially ordered sets of finite width.


References [Enhancements On Off] (What's this?)

  • [1] R. Balbes and P. Dwinger, Distributive lattices, Univ. of Missouri Press, Columbia, 1974. MR 0373985 (51:10185)
  • [2] G. Birkhoff, Lattice theory, 3rd ed., Amer. Math. Soc. Colloq. Publ., vol. 25, Amer. Math. Soc., Providence, R. I., 1967. MR 0227053 (37:2638)
  • [3] R. P. Dilworth, A decomposition theorem for partially ordered sets, Ann. of Math. (2) 51 (1950), 161-166. MR 0032578 (11:309f)
  • [4] -, Some combinatorial problems on partially ordered sets, Combinatorial Analysis (R. Bellman and M. Hall, Jr., eds,). Proc. Sympos. Appl. Math., vol. 10. Amer. Math. Soc., Providence, R. I., 1960, pp. 85-90. MR 0115940 (22:6737)
  • [5] G. Grätzer, Lattice theory: first concepts and distributive lattices, Freeman, San Francisco, Calif., 1971. MR 0321817 (48:184)
  • [6] A. B. Manaster and J. G. Rosenstein, Two-dimensional partial orderings: undecidability, J. Symbolic Logic 45 (1980), 133-143. MR 560231 (81d:03047b)
  • [7] P. Olin, Aleph-zero categorical Stone algebras, J. Austral. Math. Soc. Ser. A 26 (1978), 337-347. MR 515751 (80a:03043)
  • [8] J. H. Schmerl, Decidability and $ {\aleph _0}$-categoricity of theories of partially ordered sets, J. Symbolic Logic 45 (1980), 585-611. MR 583376 (84g:03037)
  • [9] -, Decidability and finite axiomatizability of theories of $ {\aleph _0}$-categorical partially ordered sets, J. Symbolic Logic 46 (1981), 101-120. MR 604885 (82h:03024)
  • [10] -, Arborescent structures. II: Interpretability in the theory of trees, Trans. Amer. Math. Soc. 266 (1981), 629-643. MR 617556 (83g:03033b)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 03C35, 03C15, 03C65, 06D05

Retrieve articles in all journals with MSC: 03C35, 03C15, 03C65, 06D05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1983-0687647-2
Keywords: $ {\aleph _0}$-categoricity, distributive lattice, finite axiomatizability
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society