The chain recurrent set for maps of the interval

Authors:
Louis Block and John E. Franke

Journal:
Proc. Amer. Math. Soc. **87** (1983), 723-727

MSC:
Primary 58F22; Secondary 54H20

MathSciNet review:
687650

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a continuous map of a compact interval into itself. We show that if the set of periodic points of is a closed set then every chain recurrent point is periodic.

**[1]**Louis Block,*Mappings of the interval with finitely many periodic points have zero entropy*, Proc. Amer. Math. Soc.**67**(1977), no. 2, 357–360. MR**0467841**, 10.1090/S0002-9939-1977-0467841-3**[2]**Louis Block,*Homoclinic points of mappings of the interval*, Proc. Amer. Math. Soc.**72**(1978), no. 3, 576–580. MR**509258**, 10.1090/S0002-9939-1978-0509258-X**[3]**C. Conley,*The gradient structure of a flow*. I, IBM Research, RC 3932 (#17806), Yorktown Heights, N. Y., July 17, 1972.**[4]**-,*Isolated invariant sets and the Morse index*, CBMS Regional Conf. Ser. in Math., no. 38, Amer. Math. Soc., Providence, R. I., 1976.**[5]**Ethan M. Coven and G. A. Hedlund,*Continuous maps of the interval whose periodic points form a closed set*, Proc. Amer. Math. Soc.**79**(1980), no. 1, 127–133. MR**560598**, 10.1090/S0002-9939-1980-0560598-7**[6]**Ethan M. Coven and Zbigniew Nitecki,*Nonwandering sets of the powers of maps of the interval*, Ergodic Theory Dynamical Systems**1**(1981), no. 1, 9–31. MR**627784****[7]**Tien Yien Li, Michał Misiurewicz, Giulio Pianigiani, and James A. Yorke,*Odd chaos*, Phys. Lett. A**87**(1981/82), no. 6, 271–273. MR**643455**, 10.1016/0375-9601(82)90692-2**[8]**Zbigniew Nitecki,*Maps of the interval with closed periodic set*, Proc. Amer. Math. Soc.**85**(1982), no. 3, 451–456. MR**656122**, 10.1090/S0002-9939-1982-0656122-2**[9]**Zbigniew Nitecki,*Topological dynamics on the interval*, Ergodic theory and dynamical systems, II (College Park, Md., 1979/1980), Progr. Math., vol. 21, Birkhäuser, Boston, Mass., 1982, pp. 1–73. MR**670074****[10]**Jin Cheng Xiong,*Continuous self-maps of the closed interval whose periodic points form a closed set*, J. China Univ. Sci. Tech.**11**(1981), no. 4, 14–23 (English, with Chinese summary). MR**701781**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
58F22,
54H20

Retrieve articles in all journals with MSC: 58F22, 54H20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1983-0687650-2

Article copyright:
© Copyright 1983
American Mathematical Society