Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On weakly $ \mathcal{K}$-countably determined spaces of continuous functions


Authors: S. Argyros and S. Negrepontis
Journal: Proc. Amer. Math. Soc. 87 (1983), 731-736
MSC: Primary 54D30; Secondary 46E10, 54E35
DOI: https://doi.org/10.1090/S0002-9939-1983-0687652-6
MathSciNet review: 687652
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A compact space $ K$ is said to be Gul'ko compact if the space $ C(K)$ is $ \mathcal{K}$-countably determined in the weak topology. Well-known compact sets, such as Eberlein compact sets, are Gul'ko compact. We prove here that the countable chain condition and metrizability are equivalent for Gul'ko compact sets.


References [Enhancements On Off] (What's this?)

  • [1] D. Amir and J. Lindenstrauss, The structure of weakly compact sets in Banach spaces, Ann. of Math. (2) 88 (1968), 35-46. MR 0228983 (37:4562)
  • [2] A. V. Archangel'skii, Some topological spaces that arise in functional analysis, Uspehi Mat. Nauk 31 (1976), 17-32 [= Russian Math. Surveys 31 (1976), 14-30]. MR 0458366 (56:16569)
  • [3] S. Argyros, S. Mercourakis and S. Negrepontis, Analytic properties of Corson-compact spaces (Proc. Fifth Prague Topological Sympos., 1981) (to appear). MR 698385 (84i:46035)
  • [4] G. Choquet, Theory of capacities, Ann. Inst. Fourier 5 (1953), 131-297. MR 0080760 (18:295g)
  • [5] W. W. Comfort and S. Negrepontis, Chain conditions in topology, Cambridge Univ. Tracts in Math., vol. 79, Cambridge Univ. Press, London and New York, 1982. MR 665100 (84k:04002)
  • [6] D. H. Fremlin, $ \mathcal{K}$-analytic spaces with metrizable compacts, Manuscript, Colchester, 1977. MR 0515109 (58:24210)
  • [7] S. P. Gul'ko, On the structure of spaces of continuous functions and their complete paracompactness, Uspehi Mat. Nauk 34 (1979), 33-40 [= Russian Math. Surveys 34 (1979), 36-44]. MR 562814 (81b:54017)
  • [8] H. P. Rosenthal, On injective Banach spaces and the spaces $ {L^\infty }(\mu )$ for finite measures $ \mu $, Acta Math. 124 (1970), 205-248. MR 0257721 (41:2370)
  • [9] -, The heredity problem for weakly compactly generated Banach spaces, Compostio Math. 28 (1974), 83-111. MR 0417762 (54:5810)
  • [10] M. Talagrand, Sur une conjecture de H. H. Corson, Bull. Sci. Math. (2) 99 (1975), 211-212. MR 0430752 (55:3757)
  • [11] -, Espaces de Banach faiblement $ \mathcal{K}$-analytiques, C. R. Acad. Sci. Paris Ser. A-B 284 (1977), A745-A748.
  • [12] -, Sur les espaces de Banach faiblement $ \mathcal{K}$-analytiques, C. R. Acad. Sci. Paris. Ser. A-B 285 (1977), A119-A122.
  • [13] -, Espaces de Banach faiblement $ \mathcal{K}$-analytiques, Ann. of Math. (2) 110 (1979), 407-438. MR 554378 (81a:46021)
  • [14] L. Vašák, On one generalization of weakly compactly generated Banach spaces, Studia Math. 70 (1980), 11-19. MR 646957 (83h:46028)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54D30, 46E10, 54E35

Retrieve articles in all journals with MSC: 54D30, 46E10, 54E35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1983-0687652-6
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society