STRONGLY EXPOSED POINTS IN BOCHNER L^p-SPACES

PETER GREIM

Abstract. We give necessary and sufficient conditions for vector-valued L^p-functions to be strongly exposed in terms of their values ($1 < p < \infty$).

In this paper we give a characterization of the strongly exposed vector-valued L^p-functions in terms of their values ($1 < p < \infty$). In [4] J. A. Johnson has shown that, given a finite positive measure space (Ω, Σ, μ), a Banach space V, an x in $L^p(\mu, V)$ and a g in $L^q(\mu, V')$ (where $1/p + 1/q = 1$), then x is strongly exposed by g if the scalar function $\|x(\cdot)\|$ is strongly exposed by $\|g(\cdot)\|$ and for almost all t with $x(t) \neq 0$ the value $x(t)$ is strongly exposed by $g(t)$. He left the converse as an open question, but gave a kind of supplement in the case that V has RNP. It is not too obvious that the converse should hold. Namely, a similar characterization of the extremal points is valid for separable V (and Borel measures on Polish spaces [3]), but not in general [2].

We are going to show that the converse does hold for Radon measures μ on locally compact spaces, no matter what properties V has (Theorem 2). If V is separable we may even admit arbitrary positive measures μ (Theorem 1). In contrast to the extremal point situation the proof is rather simple.

In this manner we shall have a characterization of strong exposure as a relation between elements of $L^p(\mu, V)$ and $L^q(\mu, V')$; however, this is not yet a characterization of strongly exposed points. We shall give such a characterization under additional assumptions concerning V (Theorems 3 and 4).

Recall that an element x of a normed space X is said to be strongly exposed by an element φ of the dual X' if

(i) $\varphi x = \|\varphi\| \cdot \|x\| \neq 0$, and

(ii) each sequence (x_n) in the ball with radius $\|x\|$, such that φx_n converges to φx, converges to x in norm.

For arbitrary functions $x: \Omega \to V$ and $g: \Omega \to V'$ let us denote the functions $t \mapsto \|x(t)\|$, $\|g(t)\|$ and $g(t)x(t)$ by $|x|$, $|g|$ and $\langle x, g \rangle$, respectively. χ_A is the characteristic function of the subset A of Ω, and v is the constant function with value v. $B(v, \varepsilon)$ denotes the closed ball with center v and radius ε.

Received by the editors May 5, 1982.

1980 Mathematics Subject Classification. Primary 46E40; Secondary 46B20.

Key words and phrases. Bochner L^p-space, Radon measure, separability, smoothness, strongly exposed point.

©1983 American Mathematical Society
0002-9939/82/0000-0834/001.75

81
Before stating the theorems we make a few observations. Assume \(g \in L^q(\mu, V) \) strongly exposes \(x \in L^p(\mu, V) \). Then from
\[
\|g\| \cdot \|x\| = gx = \int \langle x, g \rangle d\mu \leq \int |g| \cdot |x| d\mu \leq \|g\| \cdot \|x\|,
\]
we deduce \(\langle x, g \rangle = |g| \cdot |x| \) a.e. and, consequently, that \(\chi_A g \) strongly exposes \(\chi_A x \) for all measurable \(A \) with \(\chi_A x \neq 0 \). Thus, in order to prove the theorems below, knowing that \(x \) and \(g \) vanish outside a suitable \(\sigma \)-finite set, we may assume without loss of generality that \(\mu \) is finite. For the same reason we may assume that \(|x| \) and \(|g| \) are strictly positive. We may also assume w.l.o.g. that the scalars are real, since for complex scalars \(\varphi \) strongly exposes \(x \) if and only if the real part \(\text{Re} \circ \varphi \) of \(\varphi \) strongly exposes \(x \) in the underlying real space.

Theorem 1. Let \((\Omega, \Sigma, \mu)\) be a positive measure space, \(V \) a separable Banach space, \(1 < p < \infty \), \(x \in L^p(\mu, V) \) and \(g \in L^q(\mu, V) \). Then \(g \) strongly exposes \(x \) if and only if
\[
|g| \text{ strongly exposes } |x| \quad \text{(i.e. } |g|/\|g\| = (|x|/\|x\|)^{p-1} \text{) and for almost all } t \in \Omega,
\]
\(g(t) \) strongly exposes \(x(t) \) or \(g(t) = 0 = x(t) \).

Proof. The “if” part is Theorem 1 in [4], where the finiteness of \(\mu \) is an unnecessary restriction. Now let \(g \) strongly expose \(x \). From \(\int |g| \cdot |x| d\mu = \|g\| \cdot \|x\| \) and the uniform convexity of \(L^p(\mu) \), it is clear that \(|g| \) strongly exposes \(|x| \). By the preceding remarks we can assume that \(|x| \) and \(|g| \) are strictly positive, \(\mu \) is finite and the scalars are real. For \(t \in \Omega \) and \(n \in \mathbb{N} \) define the slices
\[
S(t, n) := \{v \in V | \|v\| < |x|(t), g(t)v > (1 - 1/n) \cdot |g|(t) \cdot |x|(t)\},
\]
\[
d(t, n) := \min \{\epsilon > 0 | S(t, n) \subset B(x(t), \epsilon)\},
\]
and
\[
e(t) := \inf \{d(t, n) | n \in \mathbb{N}\}.
\]
Observe that \(g(t) \) strongly exposes \(x(t) \) if and only if \(e(t) = 0 \).

First we want to show that \(e \) is a measurable function. By the definition of \(e \) it is sufficient to show that the functions \(d(\cdot, n) \) are measurable, i.e. the sets \(\{t | d(t, n) > \delta\} \) are measurable for all \(\delta > 0 \). Fix such a \(\delta \). For \(v \in V \) define \(A_{n,v} := \{t | \|v\| < |x|(t), g(t)v > (1 - 1/n) \cdot |g|(t) \cdot |x|(t)\} \). \(A_{n,v} \) is measurable since all the functions involved are measurable (w.l.o.g. \(\mu \) is a complete measure). Now let \(D \) be a countable dense subset of \(V \). Observe that \(d(t, n) > \delta \) if and only if \(t \in A_{n,v} \) for a suitable \(v \in D \). Thus we conclude that \(\{t | d(t, n) > \delta\} \) is measurable as a countable union of measurable sets.

It remains to show that \(\{t | e(t) > 0\} \) has measure zero. Assume the contrary. Then there is a \(\delta > 0 \) such that \(A := \{t | e(t) > \delta\} \) has positive measure. We want to construct a sequence \((y_n) \) in \(L^p(\mu, V) \) such that \(y_n - x \geq \delta \) on \(A \), \(|y_n| \leq |x| \) and \(\langle y_n, g \rangle \geq (1 - 1/n) \cdot |g| \cdot |x| \) a.e. Then \(\|y_n\| \leq \|x\| \), \(\|y_n - x\|^p \geq \mu(A) \cdot \delta^p \) and \(g y_n \geq (1 - 1/n) \cdot |g| \cdot \|x\| \), which means that \(g \) does not strongly expose \(x \), a contradiction. To this end let \(n \in \mathbb{N} \) and define the sets \(A_{n,v} \) as above. Then
\[
A \subset \{t | d(t, n) > \delta\} = \bigcup_{v \in D} A_{n,v}.
\]
Hence \(A = \bigcup_{m=1}^{\infty} B_m \), where each \(B_m \) is a measurable set contained in some \(A_{n,v_m} \), \(v_m \in D \). Obviously \(y_n := \chi_{\Omega \setminus A} x + \sum_{m=1}^{\infty} v_m \cdot \chi_{B_m} \) has the desired properties. □
Theorem 2. Let μ be a Radon measure on a locally compact space Ω, V any Banach space, $1 < p < \infty$, $x \in L^p(\mu, V)$ and $g \in L^q(\mu, V')$. Then g strongly exposes x if and only if $|g|$ strongly exposes $|x|$ and for almost all $t \in \Omega$, $g(t)$ strongly exposes $x(t)$ or $g(t) = 0 = x(t)$.

Proof. We proceed as in the proof of Theorem 1; we have to show that $\{t \mid e(t) > 0\}$ is a null set. By Lusin's theorem the restrictions of x and g to suitable compact subsets, whose complements have arbitrarily small measures, are continuous. Thus we may assume w.l.o.g. that x and g are continuous on Ω. Consequently the sets $A_{n,v}$ are open, and so is their union $\bigcup_{v \in V} A_{n,v} = \{t \mid d(t, n) > \delta\}$. This shows the measurability of e.

In order to verify that $\{t \mid e(t) > 0\}$ is a null set, replace the set A in the proof of Theorem 1 by a compact subset with positive measure ($A \subset \{t \mid e(t) > \delta\}$, A compact, $\mu(A) > 0$) and proceed as above. Then by its compactness A is contained in a finite union of sets $A_{n,v}$, and the functions y_n defined analogously form the desired sequence. \hfill \square

Since the dual of $L^p(\mu, V)$ is $L^q(\mu, V')$ if V' has RNP, the following is an immediate corollary from the preceding theorems.

Theorem 3. Let V' have RNP. Assume that μ is a Radon measure or V is separable. Then for each strongly exposed $x \in L^p(\mu, V)$ almost all values $x(t)$ are strongly exposed or zero.

As mentioned before this is not yet a characterization of strongly exposed points in $L^p(\mu, V)$. Namely, given an $x \in L^p(\mu, V)$ such that almost all $x(t)$ are strongly exposed by some $g(t) \in V'$, we do not know whether the $g(t)$'s fit together in a measurable way. We do, however, if V is smooth.

Theorem 4. Let V be smooth, μ arbitrary. Then each $x \in L^p(\mu, V)$ with $x(t)$ strongly exposed or zero a.e. is strongly exposed.

Proof. W.l.o.g. $\|x\| = 1$. We may choose an $A \in \Sigma$ s.t. $\chi_A x = 0$ and, for all $t \not\in A$, $x(t)$ is strongly exposed by some norm 1 functional $g_0(t)$, and a sequence of simple functions x_n, vanishing on A and taking only strongly exposed values outside A (namely, certain $x(t)$'s), such that $x_n(t) \to x(t)$ everywhere. Put $g_0(t) := 0$ for $t \in A$. Since the support mapping $v \mapsto$ norm 1 functional supporting the unit ball in $v/\|v\|$ is norm-$\sigma(V', V)$-continuous on the unit sphere [1, p. 22], hence everywhere on $V \setminus \{0\}$, g_0 is the weak-* limit of a sequence of simple functions, hence weak-* measurable. From this it is easy to see that $\langle y, g_0 \rangle$ is measurable for all $y \in L^p(\mu, V)$ and that $\varphi y := \int \langle y, x \rangle x^p g_0^* \, d\mu$ defines a linear functional on $L^p(\mu, V)$ with $\varphi x = 1$ and $\|\varphi\| = 1$. Although $g := |x|^p g_0$ need not be Bochner measurable, $|g|$ is in $L^q(\mu)$ and the proof of [4, Theorem 1] shows that φ strongly exposes x. \hfill \square

Added in proof. We can dispose of the RNP requirement in Theorem 3.

Theorem 3'. Assume that μ is a Radon measure or V is separable. Then for each strongly exposed $x \in L^p(\mu, V)$ almost all values $x(t)$ are strongly exposed or zero.
This is a consequence of the facts that 1. any functional \(\varphi \) on \(L^p(\mu, V) \) may be regarded as a weak-* measurable function \(g: \Omega \rightarrow V' \) such that the upper integral \(\int|g|^q d\mu \) equals \(\|\varphi\|^q \) and \(\varphi y = \int \langle y, g \rangle d\mu \) [5, p. 97], and 2. that Theorems 1 and 2 are valid also for these \(g \) (where the measurability of \(|g| \) is implicit in \("|g| \) strongly exposes \(|x| \)\)). In order to verify the second fact recall that the proof of [4, Theorem 1] shows the sufficiency. If in the paragraph preceding Theorem 1 we replace \(|g| \) by a measurable function \(f \gg |g| \) such that \(|g|^q \) and \(f^q \) have the same (upper) integral, the arguments of this paragraph prove that \(\langle x, g \rangle = |g| \cdot |x| = f \cdot |x| \) a.e. and \(f = 0 \) a.e. on \(\{t \mid |x| (t) = 0\} \). Consequently \(|g| \) is measurable. But then (again assuming w.l.o.g. that \(|x| \) and \(|g| \) are strictly positive) the proofs of Theorems 1 and 2 work, since we only needed that the functions \(\langle y, g \rangle (y \in V) \) and \(x \) and \(|g| \cdot |x| \) are measurable. □

Remark. Although each strongly exposing \(g \) has a measurable norm function \(|g| \), it is not true that \(g \) itself is measurable: as \(L^p(\mu, l^1) \) has RNP, the strongly exposing functionals are dense in its dual which contains \(L^q(\mu, l^\infty) \) as a proper closed subspace because \(l^\infty \) lacks RNP (\(\mu \) not purely atomic).

BIBLIOGRAPHY

Mathematisches Institut, Freie Universität, Arnimallee 2–6, D 1000 Berlin 33, Germany

Current address: Department of Mathematical Sciences, Memphis State University, Memphis, Tennessee 38152

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use