Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Nonexistence of invariant measures


Author: David Promislow
Journal: Proc. Amer. Math. Soc. 88 (1983), 89-92
MSC: Primary 43A07; Secondary 28C10
DOI: https://doi.org/10.1090/S0002-9939-1983-0691283-1
MathSciNet review: 691283
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be a group acting on a set $ X$. Suppose that for some positive integer $ r$, $ G$ contains a free group $ F$ of rank $ > r$ and the intersection of any stabilizer with $ F$ has rank $ \leqslant r$. A graph theoretic approach is used to show that there is no invariant measure on $ X$.


References [Enhancements On Off] (What's this?)

  • [1] C. A. Akemann, Operator algebras associated with Fuchsian groups, Houston J. Math. 7 (1981), 295-301. MR 640971 (83a:22004)
  • [2] C. Berge, Graphs and hypergraphs, North-Holland, Amsterdam, 1973. MR 0357172 (50:9640)
  • [3] J. Dixmier and E. C. Lance, Deux nouveaux facteurs de type $ {\text{I}}{{\text{I}}_1}$, Invent. Math. 7 (1969), 226-234. MR 0248535 (40:1787)
  • [4] E. G. Effros, Property $ \Gamma $ and inner amenability, Proc. Amer. Math. Soc. 47 (1975), 483-486. MR 0355626 (50:8100)
  • [5] F. P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Math. Studies, no. 16, New York, 1969. MR 0251549 (40:4776)
  • [6] M. Hall, Jr., The theory of groups, Macmillan, New York, 1959. MR 0103215 (21:1996)
  • [7] W. Imrich, Subgroup theorems and graphs, Combinatorial Mathematics V, Lecture Notes in Math., vol. 622, Springer-Verlag, Berlin and New York, 1977, pp. 1-27. MR 0463016 (57:2980)
  • [8] W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, Interscience, New York, 1966.
  • [9] J. M. Rosenblatt, A generalization of Følnep=m- tion, Math. Scand. 33 (1973), 153-170. MR 0333068 (48:11393)
  • [10] -, Uniqueness of invariant means, Trans. Amer. Math. Soc. 265 (1981), 623-636. MR 610970 (83a:28026)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 43A07, 28C10

Retrieve articles in all journals with MSC: 43A07, 28C10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1983-0691283-1
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society