LOGICS WITH GIVEN CENTERS AND STATE SPACES

PAVEL PTÁK

Abstract. Let \(B \) be a Boolean algebra and let \(K \) be a compact convex subset of a locally convex topological linear space. Then there exists a logic with the center Boolean isomorphic to \(B \) and with the state space affinely homeomorphic to \(K \).

Introduction. In the quantum logic approach to the foundations of quantum mechanics, one identifies the event structure of a system with an orthomodular partially ordered set \(L \) (called usually a logic). The set of states is then represented by the set \(\mathcal{S}(L) \) of all probability measures on \(L \) (see [4, 7]). It can be shown that \(\mathcal{S}(L) \) is a compact convex set and conversely, it was proved by F. W. Shultz [6] that any compact convex subset of a locally convex topological linear space is affinely homeomorphic to \(\mathcal{S}(L) \) for a logic \(L \).

The center \(C(L) \) of a logic \(L \) is the subset of \(L \) consisting of all "absolutely compatible" elements. It is known that the center of \(L \) is a Boolean algebra (see [1, 4]). Obviously, any Boolean algebra is the center of a logic.

Let us now consider the center and the state space simultaneously. The question is if for any Boolean algebra \(B \) and any compact convex subset of a LCTLS there exists a logic \(L \) such that \(C(L) = B \) and \(\mathcal{S}(L) = K \). We answer the question in the affirmative. In the construction we use, among other tools, the result of Shultz [6] and the technique of R. Greechie [2] for constructing orthomodular posets.

Notions. Results. Let us first review the basic definitions and state some auxiliary propositions.

Definition 1. A logic is a set \(L \) endowed with a partial ordering \(\leq \) and a unary operation \(' \) such that:

(i) \(0, 1 \in L \);
(ii) \(a \leq b \Rightarrow b' \leq a' \) for any \(a, b \in L \);
(iii) \((a')' = a \) for any \(a \in L \);
(iv) \(a \lor a' = 1 \) for any \(a \in L \);
(v) \(\bigvee_{n=1}^{\infty} a_n \) exists in \(L \) whenever \(a_n \in L, a_n \leq a_n' \) for \(n \neq k \);
(vi) \(b = a \lor (b \land a') \) whenever \(a, b \in L, a \leq b \).

In the sequel, we shall reserve the symbol \(L \) for logics. One can prove easily that if \(a, b \in L, a \leq b' \) then \(a \lor b, a \land b \) exists in \(L \).

Definition 2. Two elements \(a, b \in L \) are called compatible if there are three elements \(c, d, e \in L \) such that \(c \leq d' \), \(d \leq e' \), \(e \leq c' \) and \(a = c \lor d, b = c \lor e \).
Definition 3. An element \(a \in L \) is called central if \(a \) is compatible to any element of \(L \). We denote by \(C(L) \) the set of all central elements of \(L \) and call \(C(L) \) the center of \(L \).

Proposition 1. The set \(C(L) \) with the operations ', \(\lor \), \(\land \) inherited from \(L \) is a Boolean algebra.

Proof. See [1, 4].

Definition 4. Let \(\{ L_\alpha \mid \alpha \in I \} \) be a collection of logics. Denote by \(\prod_{\alpha \in I} L_\alpha \) the ordinary Cartesian product of the sets \(L_\alpha \) and endow the set \(\prod_{\alpha \in I} L_\alpha \) with the relation \(\leq \) and the unary operation ' as follows. If \(k = \{ k_\alpha \mid \alpha \in I \} \in \prod_{\alpha \in I} L_\alpha \) and \(h = \{ h_\alpha \mid \alpha \in I \} \in \prod_{\alpha \in I} L_\alpha \), then \(k \leq h \) (resp. \(k' = h \)) if and only if \(k_\alpha \leq h_\alpha \) (resp. \(k'_\alpha = h_\alpha \)) for any \(\alpha \in I \). The set \(\prod_{\alpha \in I} L_\alpha \) with the above defined \(\leq \), ' is called the product of the collection \(\{ L_\alpha \mid \alpha \in I \} \).

Proposition 2. Let \(\{ L_\alpha \mid \alpha \in I \} \) be a collection of logics. Then \(\prod_{\alpha \in I} L_\alpha \) is a logic. If \(C(L_\alpha) = \{0, 1\} \) for any \(\alpha \in I \) then \(C(\prod_{\alpha \in I} L_\alpha) \) is Boolean isomorphic to the Boolean algebra of all subsets of \(I \).

Proof. See [3, 5].

Definition 5. A state on a logic \(L \) is a mapping \(s : L \to (0, 1) \) such that:

(i) \(s(1) = 1 \);

(ii) if \(a, b \in L \), \(a \leq b \) then \(s(a \lor b) = s(a) + s(b) \).

Let us denote by \(S(L) \) the set of all states on \(L \). By a result of F. W. Shultz [6], any compact convex subset of a LCTLS equals, up to an affine homeomorphism, \(S(L) \) for a logic \(L \) (and vice versa, which is obvious).

Definition 6. A logic \(L \) is called poor (resp. rigid) if \(S(L) = \emptyset \) (resp. \(| S(L) | = 1 \)).

It is known (see [2, 6]) that there are (finite) examples of poor and rigid logics.

Proposition 3. Suppose that \(L \) is a poor logic. Put \(L_\alpha = L \) for any \(\alpha \in I \). Then \(\prod_{\alpha \in I} L_\alpha \) is also a poor logic.

Proof. Take the mapping \(f : L \to \prod_{\alpha \in I} L_\alpha \) such that \(f(k) = (k, k, k...) \) for any \(k \in L \). If \(s \in S(\prod_{\alpha \in I} L_\alpha) \) then \(sf \in S(L) \).

Definition 7. A mapping \(f : L_1 \to L_2 \) is called an embedding if \(f \) is injective and the following requirements are satisfied.

(i) \(f(1) = 1 \);

(ii) \(f(a') = f(a)' \) for any \(a \in L_1 \);

(iii) \(a \leq b \) if and only if \(f(a) \leq f(b) \);

(iv) if \(a \leq b \) then \(f(a \lor b) = f(a) \lor f(b) \).

Proposition 4. Let \(K \) be a compact convex subspace of a LCTLS. Take the logic \(L_1 \) constructed in [6, Theorem, p. 321]. Thus \(S(L_1) = K \) and moreover, \(C(L_1) = \{0, 1\} \) and \(L_1 \) can be embedded into a poor logic \(L_2 \) with \(C(L_2) = \{0, 1\} \).

Proof. We must assume here that the reader is well acquainted with the paper [6] and with the Greechie representation of logics (see [2]). It follows immediately from
the construction of [6] that $C(L_1) = \{0, 1\}$ (see e.g. the plan of the construction, p. 321). Further, let us consider the Greechie diagram D_1 of L_1 and the Greechie diagram D of a finite poor logic L exhibited in [2]. Let us choose "points" $d_1 \in D_1$, $d_2 \in D$ such that d_1, d_2 belong to exactly one Boolean block of D_1, D. Form a new Greechie diagram D_2 by taking the union $D_1 \cup D$ and then "identifying" the points d_1, d_2. The diagram D_2 then represents the required logic L_2.

We are now ready to prove our result.

Theorem. Let B be a Boolean algebra and let K be a compact convex subset of a LCTLS. Then there exists a logic L such that $C(L)$ is Boolean isomorphic to B and $S(L)$ is affinely homeomorphic to K.

Proof. We may suppose that B is a Boolean algebra of subsets of a set A. Take a logic M such that $C(M) = \{0, 1\}$, $S(M) = K$ and denote by P the poor extension of M (Proposition 4). Take a point $a \in A$ and write $L_c = P$ if $c \in A - \{a\}$, $L_a = M$. Consider the logic $R = \prod_{d \in A} L_d$. The desired logic L will now be obtained as a sublogic of R. Let us describe the elements of L. An element $r \in R$ belongs to L if and only if there exists a finite partition \mathcal{P} of A, $\mathcal{P} = \{A_i\}_{i = 1, 2, \ldots, n}$ such that $A_i \in B$ for any i, $1 \leq i \leq n$, and $r_p = r_q$ as soon as $(p, q) \in A_i$ for an index i, $1 \leq i \leq n$. We are to show that L is a logic with $C(L) = B$ and $S(L) = K$.

Obviously, $1 \in L$ and if $k \in L$ then $k' \in L$. If $k, h \in L$, $k \geq h$ then $k = h \lor (k \land h')$. Indeed, if \mathcal{P}, \mathcal{R} are partitions corresponding to k, h then $\mathcal{P} \cap \mathcal{R}$ is the partition corresponding to $k' \land h$. The rest is obvious. Thus L is a logic.

Further, since $C(L_d) = \{0, 1\}$ for any $d \in A$ then any central element of L must have only the elements 0, 1 for the coordinates. One can check easily that $k = \{k_d \mid d \in A\}$, where any k_d is either 0 or 1, belongs to L if and only if $D = \{d \mid k_d = 1\} \in B$. Consequently, $C(L) = B$.

It remains to prove that $S(L) = K$. Since $S(M) = K$, it suffices to show that there is an affine homeomorphism $g: S(L) \to S(M)$. Assume that $s \in S(L)$ For any $m \in M$, denote by k^m the element of L which has m for all its coordinates. Define $g(s)$ such that $g(s)(m) = s(k^m)$. We need to show that g is injective.

Let us suppose that $g(s_1) = g(s_2)$. Take an element $k \in L$ and assume that \mathcal{P} is the partition corresponding to k. Let A_i be such a set of \mathcal{P} that $a \in A_i$. Denote by $h = \{h_d \mid d \in A\}$ the element of L with $h_d = 0$ if $d \in A_i$, $h_d = 1$ otherwise. It follows from Proposition 3 that $s_1(k \land h) = s_2(k \land h) = 0$. Since $g(s_1) = g(s_2)$, we see, again applying Proposition 3, that $s_1(k) = s_1(k \land h') = s_2(k \land h') = s_2(k)$. Hence the mapping $g: S(L) \to S(M)$ is injective and the proof is complete.

Let us state explicitly the following special corollary.

Corollary. Given a Boolean algebra B, there exists a poor (resp. rigid) logic L such that $C(L) = B$.

Let us observe in conclusion that a similar method yields an analogous result for σ-complete logics and σ-additive states. Naturally, the center then cannot be arbitrary since there are Boolean σ-algebras without any σ-additive state.
Theorem. Let B be a Boolean σ-algebra of subsets of a set and let K be a compact convex subset of a LCTLS. Then there is a σ-complete logic L such that $C(L)$ is Boolean σ-isomorphic to B and the space of σ-additive states on L is affinely homeomorphic to K.

References

Department of Mathematics, Technical University of Prague, 16627-Prague 6, Czechoslovakia