A CORRECTION NOTE ON "GENERALIZED HEWITT-SAVAGE THEOREMS FOR STRICTLY STATIONARY PROCESSES"

JOSÉ LUIS PALACIOS

Abstract. Conditions on the distribution of a process \(\{X_n, n \in I\} \) are given under which the invariant, tail and exchangeable \(\sigma \)-fields coincide; the index set \(I \) is either the positive integers or all the integers. The results proven here correct similar statements given in [3].

1. Let \(\{X_n, n \in I\} \) be a sequence of real-valued r.v.'s on the probability space \((\mathbb{R}^\infty, \mathcal{B}^\infty, \mathbb{P})\), let \(\mathcal{I}, \mathcal{T}, \) and \(\mathcal{E} \) be the invariant, tail, and exchangeable \(\sigma \)-fields (see [3] for definitions and terminology), and consider the case where \(I \) is the set of positive integers \(J \).

It is well known (see [2, p. 39; or 4]) that without reference to the probability \(\mathbb{P} \), the following strict inclusions always hold:

\[
1 \quad \mathcal{I} \subset \mathcal{T} \subset \mathcal{E}.
\]

Hence, for any probability \(\mathbb{P} \):

\[
2 \quad \mathcal{I} \subset \mathcal{T} \subset \mathcal{E}(\mathbb{P}).
\]

Looking at (1) and (2) one can see that Theorem 1 in [3] is erroneous. The inaccuracies in [3] stem from not considering separately the case where \(I \) is \(J \), the positive integers, and the case where \(I \) is \(Z \), the integers.

2. \(Z \) setup. In this case one can define \(\mathcal{I} \) and \(\mathcal{E} \) as before mutatis mutandis (now \(T \) is onto as well as 1-1, and the permutations move around a finite number of possibly negative and positive coordinates); there are, however, several \(\sigma \)-fields that could merit being called "tail \(\sigma \)-field". (For a discussion of these \(\sigma \)-fields, and many more things related to this note and to [1], see [4].) We will be satisfied here considering \(\mathcal{T} \) to be \(\bigcap_{n=1}^{\infty} \sigma(X_i, |i| \geq n) \), where \(\sigma(X_i, i \in I) \) denotes the \(\sigma \)-field generated by the variables \(X_i, i \in I \).

In this setup it is known that

\[
3 \quad \mathcal{T} \subset \mathcal{E}.
\]

The inclusion is strict and no other inclusion is valid among \(\mathcal{I}, \mathcal{T}, \mathcal{E} \) in this setup (see [4]). From (3) it is obvious that for any probability \(\mathbb{P} \):

\[
4 \quad \mathcal{T} \subset \mathcal{E}(\mathbb{P}).
\]
3. Now we will give conditions under which the inclusions (2) and (4) can be reversed.

Let $T_n \in \Sigma$ be defined in the J setup by: $T_n \omega_k = (\omega)_k$ for $k \geq n + 1; T_n \omega_k = (\omega)_{k+1}$ for $k < n$. And in the Z setup by: $T_n \omega_k = (\omega)_k$ for $|k| > n + 1; T_n \omega_k = (\omega)_{k+1}$ for $|k| < n$. It is easily seen that $T_n^{-1} C = T^{-1} C$ for every cylinder $C \in \sigma(X_1, \ldots, X_{n-1})$ in the J setup and for every cylinder $C \in \sigma(X_i, |i| < n - 1)$ in the Z setup.

Let $P \circ T^{-n}$, P_n be the measures on \mathfrak{B}^∞ defined by $(P \circ T^{-n}) A = P(T^{-n} A)$ and $P_n(A) = P(T_n^{-1} A)$ for $n = 1, 2, \ldots$.

Let \ll denote absolutely continuity of measures.

Theorem 1. In the J setup, if $P \circ T^{-1} \ll P$ and $P_n \ll P$ uniformly in n, then $\mathcal{S} = \mathcal{S}(P)$.

Proof. It is enough to prove $\mathcal{S} \subset \mathcal{S}(P)$. Let $A \in \mathcal{S}$ and let C be a cylinder in $\sigma(X_1, \ldots, X_{n-1})$ for n to be determined later. We have

\[
P(A \Delta T^{-1} A) = P(A \Delta T_n^{-1} C) + P(T_n^{-1} C T^{-1} A) = P(T_n^{-1} A \Delta T^{-1} A) + P(T^{-1} C \Delta T^{-1} A)
\]

Let $\varepsilon > 0$ be arbitrary. Find δ (independent of n) such that $P(A) < \delta$ implies $P(T_n^{-1} A) < \varepsilon/2$ and $P(T^{-1} A) < \varepsilon/2$.

Then $P(A \Delta T^{-1} A) < \varepsilon$. Hence $P(A \Delta T^{-1} A) = 0$, i.e., $A = T^{-1} A$.

Theorem 2. In the Z setup, if $P \circ T^{-n} \ll P$ and $P_n \ll P$ uniformly in n, then $\mathcal{S} = \mathcal{S}(P)$.

Proof. It suffices to prove (i) $\mathcal{S} \subset \mathcal{S}(P)$ and (ii) $\mathcal{S} \subset \mathcal{S}(P)$. The proof of (i) is the same as in Theorem 1 mutatis mutandis. For (ii), let $A \in \mathcal{S}$ and $\varepsilon > 0$ be arbitrary. Find δ such that $P(T^{-n} B) < \delta$ for all n whenever $P(B) < \delta$ and a cylinder $C \in \sigma(X_i, |i| < m)$ such that $P(A \Delta C) < \delta$. Then $P(A \Delta T^{-m} C) + P(T^{-m} (A \Delta C)) < \varepsilon$ and hence $P(A \Delta T^{-m} C) = 0$. Consider $D = T^{-m} C$. $T^{-n} D \in \sigma(X_i, |i| \geq n)$. Take $E = \lim \sup T^{-n} D$. Then $E \in \mathcal{S}$ and $P(A \Delta E) = 0$. This finishes the proof.

4. In proving Theorems 1 and 2 we have not used the assumption in [3]:

\[
(5) \quad \text{for each } \sigma \in \Sigma, \ P(\sigma^{-1} A) = 0 \text{ when } P(A) = 0.
\]

An example is given there, where supposedly

\[
(6) \quad \mathcal{S} \subset \mathcal{S} \subset \mathcal{S}(P) \text{ but } \mathcal{S} = \mathcal{S} \text{ does not hold}
\]

because (5) is not fulfilled.

The example is the following: consider the probability measure P determined by assigning probability $1/2$ to each of the sequences $(1,0,1,0,\ldots)$ and $(0,1,0,1,\ldots)$. To see that (6) is incorrect, think of P as a two-state homogeneous Markov chain with (stationary) initial distribution $\pi(0) = \pi(1) = 1/2$, and transition probabilities $p_{00} = p_{11} = 0$, $p_{10} = p_{01} = 1$. Clearly this chain has one ergodic class $\{0,1\}$ and two periodic classes $\{0\}$ and $\{1\}$ of states.

In [1], Blackwell and Freedman (see also Freedman [2]) characterize \mathcal{S}, \mathcal{F} and \mathcal{S} when X_n is a homogeneous recurrent countable Markov chain. Applying those
results in our case (regardless of the value of $\pi(0)$ and $\pi(1)$ insofar as $0 < \pi(0) < 1$) it is plain to see that $\mathcal{F} = \text{trivial}(P)$, whereas $\mathcal{F} = \mathfrak{g}(P)$ is the σ-field generated by the two one-point atoms $\{(1,0,1,0,\ldots)\}$ and $\{(0,1,0,1,\ldots)\}$, so $\mathcal{F} \subset \mathcal{F} = \mathfrak{g}(P)$ and (6) is invalid.

Note that this Markov chain, though strictly stationary, does not satisfy the hypothesis $P_{n} \ll P$ required in Theorem 1 of [3] because the set $\{\omega\} = \{(1,0,1,0,\ldots,1,0,0,1,0,1,0,\ldots)\}$ (where _ denotes the nth position) has P-measure 0, but since $T_{n}^{-1}\omega = (0,1,0,1,0,\ldots)$, $\{\omega\}$ has $P \circ T_{n}^{-1}$-measure $1/2$.

5. Using this characterization of \mathcal{F}, \mathcal{F}, \mathcal{E} for the Markov chain case, we can detect an error in the proof of Theorem 2 in [3], where it is claimed that if f is the indicator of an \mathcal{E}-set, then Tf is also in \mathcal{E}, i.e., if A is exchangeable, $T^{-1}A$ is exchangeable. To see that this is not the case, even modulo P, where P is a probability under which X_{n} is strictly stationary, consider the example of [2, p. 46]: a Markov chain $\{X_{n}, n \geq 1\}$ with three states, whose nonzero transition probabilities are $p_{12} = p_{23} = 1$, $p_{31} = p_{32} = 1/2$. \mathcal{E} is nontrivial, in fact its P-atoms are $\{X_{1} = 3\}$ and $\{X_{1} \in \{1,2\}\}$, and $T^{-1}\{X_{1} = 3\} = \{X_{1} = 2\}(P)$, and this latter set does not belong to \mathcal{E}.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA-BERKELEY, BERKELEY, CALIFORNIA 94720

Current address: Universidad Simón Bolívar, Departamento de Matemáticas, Apartado Postal 80659, Caracas, Venezuela

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use